The AAAc(1 : 1) was synthesized in water by As2O3 and Sb2O3 with molar ratio of 1 : 1: AAAc(1 : 1)was characterized by Raman, IR, TG/DTG, DSC, XPS and XRD. The results show that there are four peaks to vsof As-OH, As-...The AAAc(1 : 1) was synthesized in water by As2O3 and Sb2O3 with molar ratio of 1 : 1: AAAc(1 : 1)was characterized by Raman, IR, TG/DTG, DSC, XPS and XRD. The results show that there are four peaks to vsof As-OH, As-O-Sb, Sb-OH and Sb-O-Sb in Raman spectra of AAAc(1 : 1) at 100 - 1 000 cm-1. The solution of AAAc(1 : 1) was also titrated with KOH solution. The titration results show that AAAc(1 : 1) is a hexabasic acid with dissociation constants of k1 = 3.62 × 10-2 , k2 = 3.05 × 10-3 , k3 = 6. 43 × 10-6 , k4 = 9. 78 × 10-8 ,k5 = 1.32 × 10-11 , k6 =3.87 × 10-12. AAAc(1 : 1) has a good solubility and stability in water, its solid obtained by free volatilizing water from its solution under air at ambient temperature is amorphous. Chemical and thermal analyture of AsO ( OH )2-OH-Sb ( OH )4-O-Sb ( OH )4-OH-AsO ( OH )2 or As ( OH )3-O-Sb(OH)4-O-Sb(OH)4-O-As(OH)3 (isomerism) through experimental determination and geometry optimization.展开更多
Silver (Ag) and silver antimonate (AgSbO3) composites with different amounts of Sb3+ were synthesized by normal sintering with the aim of realizing a thermoelectric material. The electrical conductivity (σ) increased...Silver (Ag) and silver antimonate (AgSbO3) composites with different amounts of Sb3+ were synthesized by normal sintering with the aim of realizing a thermoelectric material. The electrical conductivity (σ) increased in the sample containing larger amount of Sb3+, whereas Seebeck coefficient (S) decreased. Producing Sb3+ caused the generation of oxygen vacancies in the material, and thus the corresponding donor levels are created in the bandgap, providing more conduction electrons. The conductive Ag particles would contribute to the conduction path as bypasses for carrier transport. The thermal conductivity (κ) was slightly lower in the presence of Ag defects in AgSbO3.展开更多
Chemically synthesized cero-antimonate and titanium cero-antimonate prepared by sol-gel technique was conducted for the synthesis of a novel ion exchanger. The prepared materials has been characterized by X-ray diffra...Chemically synthesized cero-antimonate and titanium cero-antimonate prepared by sol-gel technique was conducted for the synthesis of a novel ion exchanger. The prepared materials has been characterized by X-ray diffraction, X-ray fluorescence, Fourier transform Infrared Spectroscopy (FT-IR) and Thermograve-metric analyses. The structures and empirical formula's was identified and found to CeSb4O12?6.19H2O and TiCeSb4O14?12.22H2O, for cero-antiomate and titanium cero-antimonate, respectively. The data obtained from X-ray diffraction was analyzed to define the crystallographic feature of cero-antimonate and titanium cero-antimonate and found both the composites were belong to cubic system with lattice constant 5.15 and 5.149 ?, respectively. The crystallite size and strain of cero-antimonate and titanium cero-antimonate were determined. By using ChemDraw Ultra program the modeling structures of cero-antimonate and titanium cero-antimonate were conducted. Finally, application of the prepared materials for the removal of heavy metals from industrial waste water in terms of capacity measurements was performed.展开更多
Acid-stable and highly active catalysts for the electrocatalytic oxygen evolution reaction(OER)are paramount to the advancement of electrochemical technologies for clean energy conversion and utilization.In this work,...Acid-stable and highly active catalysts for the electrocatalytic oxygen evolution reaction(OER)are paramount to the advancement of electrochemical technologies for clean energy conversion and utilization.In this work,based on the density functional theory(DFT)calculations,we systematically investigated the MSb_(2)O_(6)(M=Fe,Co,and Ni)and transition metal(TM)doped MSb_(2)O_(6)(TM-MSb_(2)O_(6),TM=Mn,Fe,Co,Ni,Cu,Zn,Ru,Rh,Pd,Ir,and Pt)as potential antimonate-based electrocatalysts for the OER.The stability and OER activity of these considered electrocatalysts were systematically studied under acidic conditions.It was found that Rh-NiSb_(2)O_(6),Pt-CoSb_(2)O_(6),Rh-FeSbO4,and Co-NiSb_(2)O_(6)can serve as efficient and stable OER electrocatalysts,and their OER catalytic activities are better than that of the current state-of-the-art OER catalyst(IrO2).Our findings highlight a family of promising antimonate-based OER electrocatalysts for future experimental verification.展开更多
We investigated the adsorption performance of five Fe-based MOFs(Fe-BTC,MIL-100(Fe),MIL-101(Fe),MIL-53(Fe)and MIL-88 C(Fe))for removal of antimonite(Sb(Ⅲ))and antimonate(Sb(Ⅴ))from water.Among these MOFs,MIL-101(Fe)...We investigated the adsorption performance of five Fe-based MOFs(Fe-BTC,MIL-100(Fe),MIL-101(Fe),MIL-53(Fe)and MIL-88 C(Fe))for removal of antimonite(Sb(Ⅲ))and antimonate(Sb(Ⅴ))from water.Among these MOFs,MIL-101(Fe)exhibited the best adsorption capacities for both Sb(Ⅲ)and Sb(Ⅴ)(151.8 and 472.8 mg/g,respectively)which were higher than those of most adsorbents previously reported.The effect of steric hindrance was evident during Sb removal using the Fe-based MOFs,and the proper diameter of the smallest cage windows/channels should be considered an important parameter during the evaluation and selection of MOFs.Additionally,the adsorption capacities of MIL-101(Fe)for Sb(Ⅴ)decreased with increasing initial p H values(from 3.0 to 8.0),while the opposite trend was observed for Sb(Ⅲ).Chloride,nitrate and sulfate ions had a negligible influence on Sb(Ⅴ)adsorption,while NO3-and SO42-improved Sb(Ⅲ)adsorption.This result implies that inner sphere complexes might form during both Sb(Ⅲ)and Sb(Ⅴ)adsorption.展开更多
The function mechanism of Sb(V) in As, Sb and Bi impurities removal from copper electrolyte was investigated by adding Sb(V) ion in a synthetic copper electrolyte containing 45 g/L Cu2+, 185 g/L H2SO4, 10 g/L As ...The function mechanism of Sb(V) in As, Sb and Bi impurities removal from copper electrolyte was investigated by adding Sb(V) ion in a synthetic copper electrolyte containing 45 g/L Cu2+, 185 g/L H2SO4, 10 g/L As and 0.5 g/L Bi. The electrolyte was filtered, and the precipitate structure, morphology and composition were characterized by chemical analysis, SEM, TEM, EDS, XRD and FTIR. The results show that the precipitate is in the shape of many irregular lumps with size of 50-200 μm, and it mainly consists of As, Sb, Bi and O elements. The main characteristic bands in the FTIR spectra of the precipitate are As-O-As, As-O-Sb, Sb-O-Bi, Sb-O-Sb and Bi-O-Bi. The precipitate is the mixture of microcrystalline of AsSbO4, BiSbO4 and Bi3SbO7 by XRD and electronic diffraction. The removal of As, Sb and Bi impurities by Sb(V) ion can be mainly ascribed to the formation of antimonate in copper electrolytes.展开更多
基金Project(50274075) supported by the National Natural Science Foundation of China
文摘The AAAc(1 : 1) was synthesized in water by As2O3 and Sb2O3 with molar ratio of 1 : 1: AAAc(1 : 1)was characterized by Raman, IR, TG/DTG, DSC, XPS and XRD. The results show that there are four peaks to vsof As-OH, As-O-Sb, Sb-OH and Sb-O-Sb in Raman spectra of AAAc(1 : 1) at 100 - 1 000 cm-1. The solution of AAAc(1 : 1) was also titrated with KOH solution. The titration results show that AAAc(1 : 1) is a hexabasic acid with dissociation constants of k1 = 3.62 × 10-2 , k2 = 3.05 × 10-3 , k3 = 6. 43 × 10-6 , k4 = 9. 78 × 10-8 ,k5 = 1.32 × 10-11 , k6 =3.87 × 10-12. AAAc(1 : 1) has a good solubility and stability in water, its solid obtained by free volatilizing water from its solution under air at ambient temperature is amorphous. Chemical and thermal analyture of AsO ( OH )2-OH-Sb ( OH )4-O-Sb ( OH )4-OH-AsO ( OH )2 or As ( OH )3-O-Sb(OH)4-O-Sb(OH)4-O-As(OH)3 (isomerism) through experimental determination and geometry optimization.
文摘Silver (Ag) and silver antimonate (AgSbO3) composites with different amounts of Sb3+ were synthesized by normal sintering with the aim of realizing a thermoelectric material. The electrical conductivity (σ) increased in the sample containing larger amount of Sb3+, whereas Seebeck coefficient (S) decreased. Producing Sb3+ caused the generation of oxygen vacancies in the material, and thus the corresponding donor levels are created in the bandgap, providing more conduction electrons. The conductive Ag particles would contribute to the conduction path as bypasses for carrier transport. The thermal conductivity (κ) was slightly lower in the presence of Ag defects in AgSbO3.
文摘Chemically synthesized cero-antimonate and titanium cero-antimonate prepared by sol-gel technique was conducted for the synthesis of a novel ion exchanger. The prepared materials has been characterized by X-ray diffraction, X-ray fluorescence, Fourier transform Infrared Spectroscopy (FT-IR) and Thermograve-metric analyses. The structures and empirical formula's was identified and found to CeSb4O12?6.19H2O and TiCeSb4O14?12.22H2O, for cero-antiomate and titanium cero-antimonate, respectively. The data obtained from X-ray diffraction was analyzed to define the crystallographic feature of cero-antimonate and titanium cero-antimonate and found both the composites were belong to cubic system with lattice constant 5.15 and 5.149 ?, respectively. The crystallite size and strain of cero-antimonate and titanium cero-antimonate were determined. By using ChemDraw Ultra program the modeling structures of cero-antimonate and titanium cero-antimonate were conducted. Finally, application of the prepared materials for the removal of heavy metals from industrial waste water in terms of capacity measurements was performed.
基金supported by China Ministry of Science and Technology(No.2021YFA1600800)China Postdoctoral Science Foundation funded project(Nos.2021TQ0216 and 2021M702279)+2 种基金Anhui Provincial Natural Science Foundation(No.2108085UD06)the“Transformational Technologies for Clean Energy and Demonstration”,Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA 21000000)the Fundamental Research Funds for the Central Universities(No.WK2060000021).
文摘Acid-stable and highly active catalysts for the electrocatalytic oxygen evolution reaction(OER)are paramount to the advancement of electrochemical technologies for clean energy conversion and utilization.In this work,based on the density functional theory(DFT)calculations,we systematically investigated the MSb_(2)O_(6)(M=Fe,Co,and Ni)and transition metal(TM)doped MSb_(2)O_(6)(TM-MSb_(2)O_(6),TM=Mn,Fe,Co,Ni,Cu,Zn,Ru,Rh,Pd,Ir,and Pt)as potential antimonate-based electrocatalysts for the OER.The stability and OER activity of these considered electrocatalysts were systematically studied under acidic conditions.It was found that Rh-NiSb_(2)O_(6),Pt-CoSb_(2)O_(6),Rh-FeSbO4,and Co-NiSb_(2)O_(6)can serve as efficient and stable OER electrocatalysts,and their OER catalytic activities are better than that of the current state-of-the-art OER catalyst(IrO2).Our findings highlight a family of promising antimonate-based OER electrocatalysts for future experimental verification.
基金supported by the National Natural Science Foundation of China (No. 41201302)the Natural Science Foundation of Shanghai (No. 17ZR1407000)the Fundamental Research Funds for the Central Universities (No. 222201514337)
文摘We investigated the adsorption performance of five Fe-based MOFs(Fe-BTC,MIL-100(Fe),MIL-101(Fe),MIL-53(Fe)and MIL-88 C(Fe))for removal of antimonite(Sb(Ⅲ))and antimonate(Sb(Ⅴ))from water.Among these MOFs,MIL-101(Fe)exhibited the best adsorption capacities for both Sb(Ⅲ)and Sb(Ⅴ)(151.8 and 472.8 mg/g,respectively)which were higher than those of most adsorbents previously reported.The effect of steric hindrance was evident during Sb removal using the Fe-based MOFs,and the proper diameter of the smallest cage windows/channels should be considered an important parameter during the evaluation and selection of MOFs.Additionally,the adsorption capacities of MIL-101(Fe)for Sb(Ⅴ)decreased with increasing initial p H values(from 3.0 to 8.0),while the opposite trend was observed for Sb(Ⅲ).Chloride,nitrate and sulfate ions had a negligible influence on Sb(Ⅴ)adsorption,while NO3-and SO42-improved Sb(Ⅲ)adsorption.This result implies that inner sphere complexes might form during both Sb(Ⅲ)and Sb(Ⅴ)adsorption.
基金Project(50904023)supported by the National Natural Science Foundation of ChinaProject(2010B450001)supported by the Natural Science Fund of Department of Education of Henan Province,ChinaProject(092300410064)supported by the Basic and Frontier Technologies Research Projects of Henan Province,China
文摘The function mechanism of Sb(V) in As, Sb and Bi impurities removal from copper electrolyte was investigated by adding Sb(V) ion in a synthetic copper electrolyte containing 45 g/L Cu2+, 185 g/L H2SO4, 10 g/L As and 0.5 g/L Bi. The electrolyte was filtered, and the precipitate structure, morphology and composition were characterized by chemical analysis, SEM, TEM, EDS, XRD and FTIR. The results show that the precipitate is in the shape of many irregular lumps with size of 50-200 μm, and it mainly consists of As, Sb, Bi and O elements. The main characteristic bands in the FTIR spectra of the precipitate are As-O-As, As-O-Sb, Sb-O-Bi, Sb-O-Sb and Bi-O-Bi. The precipitate is the mixture of microcrystalline of AsSbO4, BiSbO4 and Bi3SbO7 by XRD and electronic diffraction. The removal of As, Sb and Bi impurities by Sb(V) ion can be mainly ascribed to the formation of antimonate in copper electrolytes.