Antimony-doped tin hydroxide colloid precipitates were prepared by hydrolysis of SnCl4·5H2O and SbCl3 ethanol solutions. Isoamyl acetate was selected as azeotropic drying solvent and was compared with the most co...Antimony-doped tin hydroxide colloid precipitates were prepared by hydrolysis of SnCl4·5H2O and SbCl3 ethanol solutions. Isoamyl acetate was selected as azeotropic drying solvent and was compared with the most commonly used n-butanol solvent on treating precipitate for low hard agglomeration precursor powders. The FT-IR, BET, XRD, and TEM results of the precursor powders and calcinated antimony-doped tin oxide powders were recorded. The results demonstrate that isoamyl acetate is an excellent azeotropic drying solvent that can effectively prevent the agglomeration of particles and greatly improve the fluffiness of the obtained dried powders. After these precursor powders are calcined, antimony-doped tin oxide nanopowders with tetragonal rutile structure and high dispersivity can be obtained.展开更多
Antimony-doped tin oxide(ATO) nanoparticles were prepared by the mild hydrothermal method at 200 ℃ using sodium stannate, antimony oxide, sodium hydroxide and sulfuric acid as the starting materials. The doped powder...Antimony-doped tin oxide(ATO) nanoparticles were prepared by the mild hydrothermal method at 200 ℃ using sodium stannate, antimony oxide, sodium hydroxide and sulfuric acid as the starting materials. The doped powders were examined by differential thermal analysis(DTA), X-ray diffractometry(XRD) and transmission electron microscopy(TEM). The doping levels of antimony were determined by volumetric method and iodimetry.The results show that antimony is incorporated into the crystal lattice of tin oxide and the doping levels of antimony in the resulting powders are 2.4%, 4.3 % and 5.1 % (molar fraction). The mean particle size of ATO nanoparticles is in the range of 25 - 30 nm. The effects of antimony doping level on the crystalline size and crystallinity were also discussed.展开更多
Proton exchange membrane(PEM)water electrolysis represents a promising technology for green hydrogen production,but its widespread deployment is greatly hindered by the indispensable usage of platinum group metal cata...Proton exchange membrane(PEM)water electrolysis represents a promising technology for green hydrogen production,but its widespread deployment is greatly hindered by the indispensable usage of platinum group metal catalysts,especially iridium(Ir)based materials for the energy-demanding oxygen evolution reaction(OER).Herein,we report a new sequential precipitation approach to the synthesis of mixed Ir-nickel(Ni)oxy-hydroxide supported on antimony-doped tin oxide(ATO)nanoparticles(IrNiyO_(x)/ATO,20 wt.%(Ir+Ni),y=0,1,2,and 3),aiming to reduce the utilisation of scarce and precious Ir while maintaining its good acidic OER performance.When tested in strongly acidic electrolyte(0.1 M HClO_(4)),the optimised IrNi1Ox/ATO shows a mass activity of 1.0 mAµgIr^(−1) and a large turnover frequency of 123 s^(−1) at an overpotential of 350 mV,as well as a comparatively small Tafel slope of 50 mV dec^(−1),better than the IrOx/ATO control,particularly with a markedly reduced Ir loading of only 19.7µgIr cm^(−2).Importantly,IrNi1O_(x)/ATO also exhibits substantially better catalytic stability than other reference catalysts,able to continuously catalyse acidic OER at 10 mA cm^(−2) for 15 h without obvious degradation.Our in-situ synchrotron-based x-ray absorption spectroscopy confirmed that the Ir^(3+)/Ir^(4+)species are the active sites for the acidic OER.Furthermore,the performance of IrNi1Ox/ATO was also preliminarily evaluated in a membrane electrode assembly,which shows better activity and stability than other reference catalysts.The IrNi1Ox/ATO reported in this work is a promising alternative to commercial IrO_(2) based catalysts for PEM electrolysis.展开更多
Antimony-doped tin oxide(ATO) nanoparticles with an average size of ~ 6 nm were prepared by co-precipitation and subsequent heat treatment. Graphitic carbon nitride(g-CN)/ATO hybrid nanocomposite was designed by the ...Antimony-doped tin oxide(ATO) nanoparticles with an average size of ~ 6 nm were prepared by co-precipitation and subsequent heat treatment. Graphitic carbon nitride(g-CN)/ATO hybrid nanocomposite was designed by the combination of thermally synthesized g-CN and ATO nanoparticles by ultrasonication. The materials were characterized using N2 adsorption/desorption(BET), X-ray diffraction(XRD), scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS), transmission electron microscopy(TEM) and Fourier transform infrared spectroscopy(FTIR). A mixture of five volatile organic compounds(VOCs, chloroform, benzene, toluene, xylene and styrene) was used to compare the adsorption capacity of the samples. The adsorption capacity of ATO nanoparticles was improved by the addition of g-CN. Experimental data showed that, among the five VOCs,chloroform was the least adsorbed, regardless of the samples. The g-CN/ATO showed nearly three times greater adsorption capacity for the VOC mixture than pure ATO. The unchanged efficiency of VOC adsorption during cyclic use demonstrated the completely reversible adsorption and desorption behavior of the nanocomposite at room conditions. This economically and environmentally friendly material can be a practical solution for outdoor and indoor VOC removal.展开更多
基金Project(50471027) supported by the National Natural Science Foundation of China
文摘Antimony-doped tin hydroxide colloid precipitates were prepared by hydrolysis of SnCl4·5H2O and SbCl3 ethanol solutions. Isoamyl acetate was selected as azeotropic drying solvent and was compared with the most commonly used n-butanol solvent on treating precipitate for low hard agglomeration precursor powders. The FT-IR, BET, XRD, and TEM results of the precursor powders and calcinated antimony-doped tin oxide powders were recorded. The results demonstrate that isoamyl acetate is an excellent azeotropic drying solvent that can effectively prevent the agglomeration of particles and greatly improve the fluffiness of the obtained dried powders. After these precursor powders are calcined, antimony-doped tin oxide nanopowders with tetragonal rutile structure and high dispersivity can be obtained.
文摘Antimony-doped tin oxide(ATO) nanoparticles were prepared by the mild hydrothermal method at 200 ℃ using sodium stannate, antimony oxide, sodium hydroxide and sulfuric acid as the starting materials. The doped powders were examined by differential thermal analysis(DTA), X-ray diffractometry(XRD) and transmission electron microscopy(TEM). The doping levels of antimony were determined by volumetric method and iodimetry.The results show that antimony is incorporated into the crystal lattice of tin oxide and the doping levels of antimony in the resulting powders are 2.4%, 4.3 % and 5.1 % (molar fraction). The mean particle size of ATO nanoparticles is in the range of 25 - 30 nm. The effects of antimony doping level on the crystalline size and crystallinity were also discussed.
基金supported by the National Innovation Agency of Portugal through the project Baterias 2030(Grant No.POCI-01-0247-FEDER-046109)J R E would like to acknowledge the Fundación General CSIC’s ComFuturo programme which has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No.101034263+2 种基金The authors appreciate Dr Laura Simonelli and Dr Vlad Martin Diaconescu for their assistance in XAS measurements at the beamline BL22-CLÆSS,ALBA synchrotron(experiment AV-2022025706)R M is grateful to the Portuguese Foundation for Science and Technology(FCT)for the doctoral grant(Grant No.2021.06496.BD)R M and A M are grateful for the financial support from:LA/P/0045/2020,UIDB/00511/2020 and UIDP/00511/2020,funded by the national funds through FCT/MCTES(PIDDAC)。
文摘Proton exchange membrane(PEM)water electrolysis represents a promising technology for green hydrogen production,but its widespread deployment is greatly hindered by the indispensable usage of platinum group metal catalysts,especially iridium(Ir)based materials for the energy-demanding oxygen evolution reaction(OER).Herein,we report a new sequential precipitation approach to the synthesis of mixed Ir-nickel(Ni)oxy-hydroxide supported on antimony-doped tin oxide(ATO)nanoparticles(IrNiyO_(x)/ATO,20 wt.%(Ir+Ni),y=0,1,2,and 3),aiming to reduce the utilisation of scarce and precious Ir while maintaining its good acidic OER performance.When tested in strongly acidic electrolyte(0.1 M HClO_(4)),the optimised IrNi1Ox/ATO shows a mass activity of 1.0 mAµgIr^(−1) and a large turnover frequency of 123 s^(−1) at an overpotential of 350 mV,as well as a comparatively small Tafel slope of 50 mV dec^(−1),better than the IrOx/ATO control,particularly with a markedly reduced Ir loading of only 19.7µgIr cm^(−2).Importantly,IrNi1O_(x)/ATO also exhibits substantially better catalytic stability than other reference catalysts,able to continuously catalyse acidic OER at 10 mA cm^(−2) for 15 h without obvious degradation.Our in-situ synchrotron-based x-ray absorption spectroscopy confirmed that the Ir^(3+)/Ir^(4+)species are the active sites for the acidic OER.Furthermore,the performance of IrNi1Ox/ATO was also preliminarily evaluated in a membrane electrode assembly,which shows better activity and stability than other reference catalysts.The IrNi1Ox/ATO reported in this work is a promising alternative to commercial IrO_(2) based catalysts for PEM electrolysis.
基金supported by a grant from the Korean Ministry of Education, Science, and Technology (MEST)Republic of Korea through the National Research Foundation (NRF) (No. 2017-R1C1B2011968)
文摘Antimony-doped tin oxide(ATO) nanoparticles with an average size of ~ 6 nm were prepared by co-precipitation and subsequent heat treatment. Graphitic carbon nitride(g-CN)/ATO hybrid nanocomposite was designed by the combination of thermally synthesized g-CN and ATO nanoparticles by ultrasonication. The materials were characterized using N2 adsorption/desorption(BET), X-ray diffraction(XRD), scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS), transmission electron microscopy(TEM) and Fourier transform infrared spectroscopy(FTIR). A mixture of five volatile organic compounds(VOCs, chloroform, benzene, toluene, xylene and styrene) was used to compare the adsorption capacity of the samples. The adsorption capacity of ATO nanoparticles was improved by the addition of g-CN. Experimental data showed that, among the five VOCs,chloroform was the least adsorbed, regardless of the samples. The g-CN/ATO showed nearly three times greater adsorption capacity for the VOC mixture than pure ATO. The unchanged efficiency of VOC adsorption during cyclic use demonstrated the completely reversible adsorption and desorption behavior of the nanocomposite at room conditions. This economically and environmentally friendly material can be a practical solution for outdoor and indoor VOC removal.