AIM: To explore the inhibitory effects of pokeweed antiviral protein seed (PAP-S) and PAP encoded by a eukaryotic expression plasmid on hepatitis B virus (HBV) replication in vitro. METHODS: HepG2 2.2.15 cells in cult...AIM: To explore the inhibitory effects of pokeweed antiviral protein seed (PAP-S) and PAP encoded by a eukaryotic expression plasmid on hepatitis B virus (HBV) replication in vitro. METHODS: HepG2 2.2.15 cells in cultured medium were treated with different concentrations of PAP-S. HBsAg, HBeAg and HBV DNA in supernatants were determined by ELISA and fluorescent quantitative PCR respectively. MTT method was used to assay for cytotoxicity. HepG2 were cotransfected with various amounts of PAP encoded by a eukaryotic expression plasmid and replication competent wild-type HBV 1.3 fold over- length plasmid. On d 3 after transfection, HBsAg and HBeAg were determined by using ELISA. Levels of HBV core-associated DNA and RNA were detected by using Southern and Northern blot, respectively. RESULTS: The inhibitory effects of PAP-S on HBsAg, HBeAg and HBV DNA were gradually enhanced with the increase of PAP concentration. When the concentration of PAP-S was 10 μg/mL, the inhibition rates of HBsAg, HBeAg and HBV DNA were 20.9%, 30.2% and 50%, respectively. After transfection of 1.0 μg and 2.0 μg plasmid pXF3H-PAP, the levels of HBV nucleocapside- associated DNA were reduced by 38.0% and 74.0% respectively, the levels of HBsAg in the media by 76.8% and 99.7% respectively, and the levels of HBeAg by 72.7% and 99.3% respectively as compared with controls. Transfection with 2 μg plasmid pXF3H-PAP reduced the levels of HBV nucleocapside-associated RNA by 69.0%.CONCLUSION: Both PAP-S and PAP encoded by a eukaryotic expression plasmid could effectively inhibit HBV replication and antigen expression in vitro, and the inhibitory effects were dose-dependent.展开更多
The zinc-finger antiviral protein(ZAP)is a host factor that specifically inhibits the replication of certain viruses by eliminating viral mRNAs in the cytoplasm.In previous studies,we demonstrated that ZAP directly bi...The zinc-finger antiviral protein(ZAP)is a host factor that specifically inhibits the replication of certain viruses by eliminating viral mRNAs in the cytoplasm.In previous studies,we demonstrated that ZAP directly binds to the viral mRNAs and recruits the RNA exosome to degrade the target RNA.In this article,we provide evidence that a DEXH box RNA helicase,DHX30,is required for optimal antiviral activity of ZAP.Pull-down and co-immunoprecipitation assays demonstrated that DHX30 and ZAP interacted with each other via their N terminal domains.Downregulation of DHX30 with shRNAs reduced ZAP’s antiviral activity.These data implicate that DHX30 is a cellular factor involved in the antiviral function of ZAP.展开更多
AIM:To develop a sensitive assay for screening compounds against hepatitis C virus (HCV).METHODS:The proteolytic cleavage of NS3/4A on enhanced yellow fluorescent protein (eYFP)-mitochondrial antiviral signaling prote...AIM:To develop a sensitive assay for screening compounds against hepatitis C virus (HCV).METHODS:The proteolytic cleavage of NS3/4A on enhanced yellow fluorescent protein (eYFP)-mitochondrial antiviral signaling protein (MAVS) was examined by reporter enzyme secreted placental alkaline phosphatase (SEAP),which enabled us to perform ongoing monitoring of anti-HCV drugs through repeated chemiluminescence.Subcellular localization of eYFP-MAVS was assessed by fluorescence microscopy.Cellular localization and protein levels were examined by Western blotting.RESULTS:HCV NS3/4A protease cleaved eYFP-MAVSfrom mitochondria to block the activation of interferon (IFN)-β promoter,thus resulting in downregulation of SEAP activity.The decrease in SEAP activity was proportional to the dose of active NS3/4A protease.Also this reporter assay was used to detect anti-HCV activity of IFN-α and cyclosporine A.CONCLUSION:Our data show that this reporter system is a sensitive and quantitative reporter of anti-HCV inhibitors.This system will constitute a new tool to allow the efficient screening of HCV inhibitors.展开更多
A new ribosome-inactivating protein (RIP) with a molecular weight of 31 kDa induced by Cinchonaglycoside C (1) designated CIP31, was isolated from tobacco leaves. Analysis of this protein sequence indicated that i...A new ribosome-inactivating protein (RIP) with a molecular weight of 31 kDa induced by Cinchonaglycoside C (1) designated CIP31, was isolated from tobacco leaves. Analysis of this protein sequence indicated that it belongs to the RIP family and it was distinct from the other plant RIPs reported previously at its N-terminal amino acid sequence. CIP31 can directly impair synthesis of coat protein (CP) of tobacco mosaic virus (TMV), which resulted in inhibition of TMV long distance movement and multiplication in tobacco plants at concentrations of ng/mL. Furthermore, no toxicity was shown to the growth and fertility of the plants. CIP31 was synthesized only in the presence of Cinchonaglycoside C (1) and was independent of the salicylic acid (SA) signal pathway. We provided evidence for the SA-independent biological induction of resistance.展开更多
Momordica antiviral protein 30 kD(MAP30)is a type I ribosome-inactivating protein(RIP)with antibacterial,anti-HIV and antitumor activities but lacks the ability to target tumor cells.To increase its tumor-targeting ab...Momordica antiviral protein 30 kD(MAP30)is a type I ribosome-inactivating protein(RIP)with antibacterial,anti-HIV and antitumor activities but lacks the ability to target tumor cells.To increase its tumor-targeting ability,the arginine-glycine-aspartic(RGD)peptide and the epidermal growth factor receptor interference(EGFRi)peptide were fused with MAP30,which was named ELRL-MAP30.The efficiency of targeted therapy for triple-negative breast cancer(TNBC)MDA-MB-231 cells,which lack the expression of estrogen receptor(ER),Progesterone receptor(PgR)and human epidermal growth factor receptor-2(HER2),is limited.In this study,we focus on exploring the effect and mechanism of ELRL-MAP30 on TNBC MDA-MB-231 cells.First,we discovered that ELRL-MAP30 significantly inhibited the migration and invasion of MDA-MB-231 cells and induced MDA-MB-231 cell apoptosis.Moreover,ELRL-MAP30 treatment resulted in a significant increase in Bax expression and a decrease in Bcl-2 expression.Furthermore,ELRL-MAP30 triggered apoptosis via the Fak/EGFR/Erk and Ilk/Akt signaling pathways.In addition,recombinant ELRL-MAP30 can inhibit chicken embryonic angiogenesis,and also inhibit the tube formation ability of human umbilical vein endothelial cells(HUVECs),indicating its potential therapeutic effects on tumor angiogenesis.Collectively,these results indicate that ELRL-MAP30 has significant tumor-targeting properties in MDA-MB-231 cancer cells and reveals potential therapeutic effects on angiogenesis.These findings indicate the potential role of ELRL-MAP30 in the targeted treatment of the TNBC cell line MDA-MB-231.展开更多
The zinc-finger antiviral protein(ZAP)is a host factor that specifically inhibits the replication of certain viruses,including murine leukemia virus,Sindbis virus and Ebola virus,by targeting the viral mRNAs for degra...The zinc-finger antiviral protein(ZAP)is a host factor that specifically inhibits the replication of certain viruses,including murine leukemia virus,Sindbis virus and Ebola virus,by targeting the viral mRNAs for degradation.ZAP directly binds to the target viral mRNA and recruits the cellular RNA degradation machinery to degrade the RNA.No significant sequence similarity or obvious common motifs have been found in the so far identified target viral mRNAs.The minimum length of the target sequence is about 500 nt long.Short workable ZAP-binding RNAs should facilitate further studies on the ZAP-RNA interaction and characterization of such RNAs may provide some insights into the underlying mechanism.In this study,we used the SELEX method to isolate ZAP-binding RNA aptamers.After 21 rounds of selection,ZAP-binding aptamers were isolated.Sequence analysis revealed that they are G-rich RNAs with predicted stem-loop structures containing conserved“GGGUGG”and“GAGGG”motifs in the loop region.Insertion of the aptamer sequence into a luciferase reporter failed to render the reporter sensitive to ZAP.However,overexpression of the aptamers modestly but significantly reduced ZAP’s antiviral activity.Substitution of the conserved motifs of the aptamers significantly impaired their ZAP-binding ability and ZAP-antagonizing activity,suggesting that the RNA sequence is important for specific interaction between ZAP and the target RNA.The aptamers identified in this report should provide useful tools to further investigate the details of the interaction between ZAP and the target RNAs.展开更多
Acute myocardial infarction(MI),one of the most common cardiovascular emergencies,is a leading cause of morbidity and mortality.Ample evidence has revealed an essential role for inflammasome activation and autophagy i...Acute myocardial infarction(MI),one of the most common cardiovascular emergencies,is a leading cause of morbidity and mortality.Ample evidence has revealed an essential role for inflammasome activation and autophagy in the pathogenesis of acute MI.Tax1-binding protein 1(TAX1BP1),an adaptor molecule involved in termination of proinflammatory signaling,serves as an important selective autophagy adaptor,but its role in cardiac ischemia remains elusive.This study examined the role of TAX1BP1 in myocardial ischemic stress and the underlying mechanisms involved.Levels of TAX1BP1 were significantly downregulated in heart tissues of patients with ischemic heart disease and in a left anterior descending(LAD)ligation-induced model of acute MI.Adenovirus carrying TAX1BP1 was delivered into the myocardium.The acute MI induced procedure elicited an infarct and cardiac dysfunction,the effect of which was mitigated by TAX1BP1 overexpression with little effect from viral vector alone.TAX1BP1 nullified acute MI-induced activation of the NLRP3 inflammasome and associated mitochondrial dysfunction.TAX1BP1 overexpression suppressed NLRP3 mitochondrial localization by inhibiting the interaction of NLRP3 with mitochondrial antiviral signaling protein(MAVS).Further investigation revealed that ring finger protein 34(RNF34)was recruited to interact with TAX1BP1 thereby facilitating autophagic degradation of MAVS through K27-linked polyubiquitination of MAVS.Knockdown of RNF34 using siRNA nullified TAX1BP1 yielded protection against hypoxia-induced MAVS mitochondrial accumulation,NLRP3 inflammasome activation and associated loss of mitochondrial membrane potential.Taken together,our results favor a cardioprotective role for TAX1BP1 in acute MI through repression of inflammasome activation in a RNF34/MAVS-dependent manner.展开更多
基金the National Natural Sciences Foundation ofChina, No. 30671860
文摘AIM: To explore the inhibitory effects of pokeweed antiviral protein seed (PAP-S) and PAP encoded by a eukaryotic expression plasmid on hepatitis B virus (HBV) replication in vitro. METHODS: HepG2 2.2.15 cells in cultured medium were treated with different concentrations of PAP-S. HBsAg, HBeAg and HBV DNA in supernatants were determined by ELISA and fluorescent quantitative PCR respectively. MTT method was used to assay for cytotoxicity. HepG2 were cotransfected with various amounts of PAP encoded by a eukaryotic expression plasmid and replication competent wild-type HBV 1.3 fold over- length plasmid. On d 3 after transfection, HBsAg and HBeAg were determined by using ELISA. Levels of HBV core-associated DNA and RNA were detected by using Southern and Northern blot, respectively. RESULTS: The inhibitory effects of PAP-S on HBsAg, HBeAg and HBV DNA were gradually enhanced with the increase of PAP concentration. When the concentration of PAP-S was 10 μg/mL, the inhibition rates of HBsAg, HBeAg and HBV DNA were 20.9%, 30.2% and 50%, respectively. After transfection of 1.0 μg and 2.0 μg plasmid pXF3H-PAP, the levels of HBV nucleocapside- associated DNA were reduced by 38.0% and 74.0% respectively, the levels of HBsAg in the media by 76.8% and 99.7% respectively, and the levels of HBeAg by 72.7% and 99.3% respectively as compared with controls. Transfection with 2 μg plasmid pXF3H-PAP reduced the levels of HBV nucleocapside-associated RNA by 69.0%.CONCLUSION: Both PAP-S and PAP encoded by a eukaryotic expression plasmid could effectively inhibit HBV replication and antigen expression in vitro, and the inhibitory effects were dose-dependent.
基金supported by the grant to Guangxia Gao from National Science Foundation of China(Grant No.81030030)by the grant toGuifang Chen from National Science Foundation(Grant No.30800053).
文摘The zinc-finger antiviral protein(ZAP)is a host factor that specifically inhibits the replication of certain viruses by eliminating viral mRNAs in the cytoplasm.In previous studies,we demonstrated that ZAP directly binds to the viral mRNAs and recruits the RNA exosome to degrade the target RNA.In this article,we provide evidence that a DEXH box RNA helicase,DHX30,is required for optimal antiviral activity of ZAP.Pull-down and co-immunoprecipitation assays demonstrated that DHX30 and ZAP interacted with each other via their N terminal domains.Downregulation of DHX30 with shRNAs reduced ZAP’s antiviral activity.These data implicate that DHX30 is a cellular factor involved in the antiviral function of ZAP.
基金Supported by The Natural Science Foundation of China,No.30600330,No.30671842,No.30672488,No.30700475,No.30771919and No.30700757the National High Technology Research and Development Program of China,No.2008AA02Z132+1 种基金Beijing Municipal Natural Science Foundation,No.5082016Mega-projects of Science Research for the 11th Five-Year Plan,No.2009ZX10004-4001
文摘AIM:To develop a sensitive assay for screening compounds against hepatitis C virus (HCV).METHODS:The proteolytic cleavage of NS3/4A on enhanced yellow fluorescent protein (eYFP)-mitochondrial antiviral signaling protein (MAVS) was examined by reporter enzyme secreted placental alkaline phosphatase (SEAP),which enabled us to perform ongoing monitoring of anti-HCV drugs through repeated chemiluminescence.Subcellular localization of eYFP-MAVS was assessed by fluorescence microscopy.Cellular localization and protein levels were examined by Western blotting.RESULTS:HCV NS3/4A protease cleaved eYFP-MAVSfrom mitochondria to block the activation of interferon (IFN)-β promoter,thus resulting in downregulation of SEAP activity.The decrease in SEAP activity was proportional to the dose of active NS3/4A protease.Also this reporter assay was used to detect anti-HCV activity of IFN-α and cyclosporine A.CONCLUSION:Our data show that this reporter system is a sensitive and quantitative reporter of anti-HCV inhibitors.This system will constitute a new tool to allow the efficient screening of HCV inhibitors.
基金the NationaI NaturaI Science Foundation of China(30370957)the NaturaI Science Foundation of Yunnan Province(2003C0061M).
文摘A new ribosome-inactivating protein (RIP) with a molecular weight of 31 kDa induced by Cinchonaglycoside C (1) designated CIP31, was isolated from tobacco leaves. Analysis of this protein sequence indicated that it belongs to the RIP family and it was distinct from the other plant RIPs reported previously at its N-terminal amino acid sequence. CIP31 can directly impair synthesis of coat protein (CP) of tobacco mosaic virus (TMV), which resulted in inhibition of TMV long distance movement and multiplication in tobacco plants at concentrations of ng/mL. Furthermore, no toxicity was shown to the growth and fertility of the plants. CIP31 was synthesized only in the presence of Cinchonaglycoside C (1) and was independent of the salicylic acid (SA) signal pathway. We provided evidence for the SA-independent biological induction of resistance.
文摘Momordica antiviral protein 30 kD(MAP30)is a type I ribosome-inactivating protein(RIP)with antibacterial,anti-HIV and antitumor activities but lacks the ability to target tumor cells.To increase its tumor-targeting ability,the arginine-glycine-aspartic(RGD)peptide and the epidermal growth factor receptor interference(EGFRi)peptide were fused with MAP30,which was named ELRL-MAP30.The efficiency of targeted therapy for triple-negative breast cancer(TNBC)MDA-MB-231 cells,which lack the expression of estrogen receptor(ER),Progesterone receptor(PgR)and human epidermal growth factor receptor-2(HER2),is limited.In this study,we focus on exploring the effect and mechanism of ELRL-MAP30 on TNBC MDA-MB-231 cells.First,we discovered that ELRL-MAP30 significantly inhibited the migration and invasion of MDA-MB-231 cells and induced MDA-MB-231 cell apoptosis.Moreover,ELRL-MAP30 treatment resulted in a significant increase in Bax expression and a decrease in Bcl-2 expression.Furthermore,ELRL-MAP30 triggered apoptosis via the Fak/EGFR/Erk and Ilk/Akt signaling pathways.In addition,recombinant ELRL-MAP30 can inhibit chicken embryonic angiogenesis,and also inhibit the tube formation ability of human umbilical vein endothelial cells(HUVECs),indicating its potential therapeutic effects on tumor angiogenesis.Collectively,these results indicate that ELRL-MAP30 has significant tumor-targeting properties in MDA-MB-231 cancer cells and reveals potential therapeutic effects on angiogenesis.These findings indicate the potential role of ELRL-MAP30 in the targeted treatment of the TNBC cell line MDA-MB-231.
基金supported in part by Grants(to G.G.)from National Natural Science Foundation of China(Grant Nos.30470092 and 30530020)National Basic Research Program of China(973 Program)(Grant No.2006CB504302)of China.
文摘The zinc-finger antiviral protein(ZAP)is a host factor that specifically inhibits the replication of certain viruses,including murine leukemia virus,Sindbis virus and Ebola virus,by targeting the viral mRNAs for degradation.ZAP directly binds to the target viral mRNA and recruits the cellular RNA degradation machinery to degrade the RNA.No significant sequence similarity or obvious common motifs have been found in the so far identified target viral mRNAs.The minimum length of the target sequence is about 500 nt long.Short workable ZAP-binding RNAs should facilitate further studies on the ZAP-RNA interaction and characterization of such RNAs may provide some insights into the underlying mechanism.In this study,we used the SELEX method to isolate ZAP-binding RNA aptamers.After 21 rounds of selection,ZAP-binding aptamers were isolated.Sequence analysis revealed that they are G-rich RNAs with predicted stem-loop structures containing conserved“GGGUGG”and“GAGGG”motifs in the loop region.Insertion of the aptamer sequence into a luciferase reporter failed to render the reporter sensitive to ZAP.However,overexpression of the aptamers modestly but significantly reduced ZAP’s antiviral activity.Substitution of the conserved motifs of the aptamers significantly impaired their ZAP-binding ability and ZAP-antagonizing activity,suggesting that the RNA sequence is important for specific interaction between ZAP and the target RNA.The aptamers identified in this report should provide useful tools to further investigate the details of the interaction between ZAP and the target RNAs.
基金This work was supported by the National Natural Science Foundation of China(2017YFA0506001,81900233,81770261,81521001,and 91749128)the Postdoctoral Science Foundation of China(2019M661375).
文摘Acute myocardial infarction(MI),one of the most common cardiovascular emergencies,is a leading cause of morbidity and mortality.Ample evidence has revealed an essential role for inflammasome activation and autophagy in the pathogenesis of acute MI.Tax1-binding protein 1(TAX1BP1),an adaptor molecule involved in termination of proinflammatory signaling,serves as an important selective autophagy adaptor,but its role in cardiac ischemia remains elusive.This study examined the role of TAX1BP1 in myocardial ischemic stress and the underlying mechanisms involved.Levels of TAX1BP1 were significantly downregulated in heart tissues of patients with ischemic heart disease and in a left anterior descending(LAD)ligation-induced model of acute MI.Adenovirus carrying TAX1BP1 was delivered into the myocardium.The acute MI induced procedure elicited an infarct and cardiac dysfunction,the effect of which was mitigated by TAX1BP1 overexpression with little effect from viral vector alone.TAX1BP1 nullified acute MI-induced activation of the NLRP3 inflammasome and associated mitochondrial dysfunction.TAX1BP1 overexpression suppressed NLRP3 mitochondrial localization by inhibiting the interaction of NLRP3 with mitochondrial antiviral signaling protein(MAVS).Further investigation revealed that ring finger protein 34(RNF34)was recruited to interact with TAX1BP1 thereby facilitating autophagic degradation of MAVS through K27-linked polyubiquitination of MAVS.Knockdown of RNF34 using siRNA nullified TAX1BP1 yielded protection against hypoxia-induced MAVS mitochondrial accumulation,NLRP3 inflammasome activation and associated loss of mitochondrial membrane potential.Taken together,our results favor a cardioprotective role for TAX1BP1 in acute MI through repression of inflammasome activation in a RNF34/MAVS-dependent manner.