Plant viruses in the families Luteoviridae and Geminiviridae are phloem restricted and are transmitted in a persistent,circulative manner by homopteran insects.Using fluorescence 2-D difference gel electrophoresis to ...Plant viruses in the families Luteoviridae and Geminiviridae are phloem restricted and are transmitted in a persistent,circulative manner by homopteran insects.Using fluorescence 2-D difference gel electrophoresis to compare the proteomes of F2 genotypes of Schizaphis graminum segregating for virus transmission ability,we recently discovered a panel of protein biomarkers that predict vector competency.Here we used aphid and whitefly nucleotide and expressed sequence tag database mining to test whether these biomarkers are conserved in other homopteran insects.S.graminum gene homologs that shared a high degree of predicted amino acid identity were discovered in two other aphid species and in the whitefly Bemisia tabaci.Selected reaction monitoring mass spectrometry was used to validate the expression of these biomarkers proteins in multiple aphid vector species.The conservation of these proteins in multiple insect taxa that transmit plant viruses along the circulative transmission pathway creates the opportunity to use these biomarkers to rapidly identify insect populations that are the most efficient vectors and allow them to be targeted for control prior to the spread of virus within a crop.展开更多
Mucosal immunity plays an important role in protecting pigs against transmissible gastroenteritis virus (TGEV) infection. To elicit mucosal immune response against TGEV, we developed a surface antigen display system...Mucosal immunity plays an important role in protecting pigs against transmissible gastroenteritis virus (TGEV) infection. To elicit mucosal immune response against TGEV, we developed a surface antigen display system using the poly-γ- glutamate synthetase A (pgsA) protein of Bacillus subtilis as an anchoring matrix to express recombinant fusion proteins of pgsA and nucleocapsid protein of TGEV in Lactobacillus casei. Surface location of fusion protein was verified by ELISA and indirect immunofluorescence test. Oral and intranasal inoculations of pregnant sow and mice with recombinant L. casei resulted in high levels of serum immunoglobulin G (IgG) and secretory immunoglobulin A (slgA) against recombinant N protein as demonstrated by ELISA. More importantly, the level of specific slgA in colostrum significantly increased compared with that of IgG. The serum IgG levels of the piglets increased after suckling colostrum produced by sows was previously inoculated with recombinant L. casei. These results indicate that immunization with recombinant L. casei expressing TGEV N protein on its surface elicited high levels of specific slgA and circulating IgG against TGEV N protein.展开更多
The infection of host plants by many different viruses causes reactive oxygen species(Ros)accumulation and yellowing symptoms,but the mechanisms through which plant viruses counteract RoS-mediated immunity to facilita...The infection of host plants by many different viruses causes reactive oxygen species(Ros)accumulation and yellowing symptoms,but the mechanisms through which plant viruses counteract RoS-mediated immunity to facilitate infection and symptom development have not been fully elucidated.Most plant viruses are transmitted by insect vectors in the field,but the molecular mechanisms underlying virus-host-insect interactions are unclear.In this study,we investigated the interactions among wheat,barley yellow dwarf virus(BYDV),and its aphid vector and found that the BYDV movement protein(MP)interacts with both wheat catalases(CATs)and the 26S proteasomeubiquitin receptor non-ATPase regulatorysubunit2homolog(PSMD2)to facilitate the 26S proteasome-mediateddegradation of CATs,promotingviral infection,disease symptom development,and aphid transmission.Overexpression of the BYDV MP gene in wheat enhanced the degradation of CATs,which leading to increased accumulation of ROS and thereby enhanced viral infection.Interestingly,transgenic wheat lines overexpressing BYDV MP showed significantly reduced proliferation of wingless aphids and an increased number of winged aphids.Consistent with this observation,silencing of CAT genes also enhanced viral accumulation and reduced the proliferation of wingless aphids but increased the occurrence of winged aphids.In contrast,transgenic wheat plants overexpressing TaCAT1 exhibited the opposite changes and showed increases in grain size and weight upon infection with BYDV.Biochemical assays demonstrated that BYDV MP interacts with PSMD2 and promotes 26S proteasome-mediated degradation of TaCAT1 likely in a ubiquitination-independent manner.Collectively,our study reveals a molecular mechanism by which a plant virus manipulates the Ros production system of host plants to facilitate viral infection and transmission,shedding new light on the sophisticated interactions among viruses,host plants,and insect vectors.展开更多
Owing to the high oxygen-respiration in the brain of mammals, oxidative damage to prion protein hasbeen suggested to be an additional factor. A large body of intriguing features of scrapie and prion diseases haveprovi...Owing to the high oxygen-respiration in the brain of mammals, oxidative damage to prion protein hasbeen suggested to be an additional factor. A large body of intriguing features of scrapie and prion diseases haveprovided multiple lines of indirect chemistry evidence, suggesting that the infectious agents may be putative forms ofsequence-specific prion radicals (SSPR) and/or their immediate precursors in the transmissible spongiform encepha-lopathies (TSE). Here a molecular mechanism corresponding to the self-replication of scrapie protein mediated byprion free-radical processes, consonant with "protein-only" hypotheses is proposed. This new theory may not onlyaid our understanding of the occurrence of prions, but also provides new insight into the possible chemistry principlesunderlying the neurodegenerative disorders. It is anticipated that future studies based on this suggestion and chem-istry principles of genetic diseases may allow us to determine an effective approach to stop mad cow disease and itshuman version, new variant of Creutzfeldt-Jakob disease (v CJD).展开更多
Mosquito-borne viruses(MBVs)are a large class of viruses transmitted mainly through mosquito bites,including dengue virus,Zika virus,Japanese encephalitis virus,West Nile virus,and chikungunya virus,which pose a major...Mosquito-borne viruses(MBVs)are a large class of viruses transmitted mainly through mosquito bites,including dengue virus,Zika virus,Japanese encephalitis virus,West Nile virus,and chikungunya virus,which pose a major threat to the health of people around the world.With global warming and extended human activities,the incidence of many MBVs has increased significantly.Mosquito saliva contains a variety of bioactive protein components.These not only enable blood feeding but also play a crucial role in regulating local infection at the bite site and the remote dissemination of MBVs as well as in remodeling the innate and adaptive immune responses of host vertebrates.Here,we review the physiological functions of mosquito salivary proteins(MSPs)in detail,the influence and the underlying mechanism of MSPs on the transmission of MBVs,and the current progress and issues that urgently need to be addressed in the research and development of MSP-based MBV transmission blocking vaccines.展开更多
Sap-sucking insects often transmit plant viruses but also carry insect viruses,which infect insects but not plants.The impact of such insect viruses on insect host biology and ecology is largely unknown.Here,we identi...Sap-sucking insects often transmit plant viruses but also carry insect viruses,which infect insects but not plants.The impact of such insect viruses on insect host biology and ecology is largely unknown.Here,we identified a novel insect-specific virus carried by brown citrus aphid(Aphis citricidus),which we tentatively named Aphis citricidus picornavirus(AcPV).Phylogenetic analysis discovered a monophyletic cluster with AcPV and other unassigned viruses,suggesting that these viruses represent a new family in order Picornavirales.Systemic infection with AcPV triggered aphid antiviral immunity mediated by RNA interference,resulting in asymptomatic tolerance.Importantly,we found that AcPV was transmitted horizontally by secretion of the salivary gland into the feeding sites of plants.AcPV influenced aphid stylet behavior during feeding and increased the time required for intercellular penetration,thus promoting its transmission among aphids with plants as an intermediate site.The gene expression results suggested that this mechanism was linked with transcription of salivary protein genes and plant defense hormone signaling.Together,our results show that the horizontal transmission of AcPV in brown citrus aphids evolved in a manner similar to that of the circulative transmission of plant viruses by insect vectors,thus providing a new ecological perspective on the activity of insect-specific viruses found in aphids and improving the understanding of insect virus ecology.展开更多
In a tritrophic context of plant-insect-entomopathogen,plants play important roles in modulating the interaction of insects and their pathogenic viruses.Currently,the influence of plants on the transmission of insect ...In a tritrophic context of plant-insect-entomopathogen,plants play important roles in modulating the interaction of insects and their pathogenic viruses.Currently,the influence of plants on the transmission of insect viruses has been mainly studied on baculoviruses and some RNA viruses,whereas the impact of plants on other insect viruses is largely unknown.Here,we identified a new densovirus infecting the green peach aphid Myzus persicae and tested whether and how host plants influence the transmission of the aphid densovirus.The complete single-stranded DNA genome of the virus,M.persicae densovirus 2,is 5727 nt and contains inverted terminal repeats.Transcription and phylogenetic analysis indicated that the virus was distinct from other a few identified aphid densoviruses.The virus abundance was detected highly in the intestinal tract of aphids,compared with the lower level of it in other tissues including head,embryo,and epidermis.Cabbage and pepper plants had no obvious effect on the vertical transmission and saliva-mediated horizontal transmission of the virus.However,the honeydew-mediated horizontal transmission among aphids highly depended on host plants(65%on cabbages versus 17%on peppers).Although the virus concentration in the honeydew produced by aphids between 2 plants was similar,the honeydew production of the infected aphids reared on peppers was dramatically reduced.Taken together,our results provide evidence that plants influence the horizontal transmission of a new densovirus in an aphid population by modulating honeydew secretion of aphids,suggesting plants may manipulate the spread of an aphid-pathogenic densovirus in nature.展开更多
Aphid is one of the most destructive insect pests on cultivated plants in temperate regions.Their piercing-sucking mouthparts and phloem feeding behavior directly damage crops and deplete plant nutrients.Potato(Solanu...Aphid is one of the most destructive insect pests on cultivated plants in temperate regions.Their piercing-sucking mouthparts and phloem feeding behavior directly damage crops and deplete plant nutrients.Potato(Solanum tuberosum L.)is one of the most important food sources on the planet,and several aphid species,e.g.,Myzus persicae(Sulzer)(green peach aphid)and Macrosiphum euphorbiae(Thomas)(potato aphid)(Hemiptera:Aphididae)colonize potato and transmit several economically important viruses.Aphid-transmitted potato viruses have been emerging all over the world as a very serious problem in potato production,inducing a wide variety of foliar and tuber symptoms,leading to severe yield reduction and loss of tuber quality.In this review,recent advances in understanding the interactions of potato viruses with their hosts,aphid vectors and the environment are described.展开更多
Using 2-D electrophoresis and virus overlay assay, a 50-kDa protein (P50) exhibiting specific binding to purified virus particles of BYDV-GAV was found in the protein extracts from Schizaphis graminum and Sitobion ave...Using 2-D electrophoresis and virus overlay assay, a 50-kDa protein (P50) exhibiting specific binding to purified virus particles of BYDV-GAV was found in the protein extracts from Schizaphis graminum and Sitobion avenae, two aphid species transmitting BYDV-GAV. P50 in the extracts of S. graminum was isolated by preparation electrophoresis and electro-eluted proteins from the gel slices for antiserum preparation. After feeding the antiserum through membrane, the transmission efficiencies of S. graminum and S. avenae for BYDV-GAV decreased significantly. It was suggested that P50 should be related with transmission pro- cess. Location of P50 was found at the plasma membrane surrounding the accessory salivary gland (ASG) in the head tissues of S. graminum by immunogold-labelling experiment. The ascertainment of the protein associated with virus transmission has a significance influence on further understanding the transmission mechanism and genetic engineering for resistant to vector transmission.展开更多
AIM:To evaluate effects of preand postnatal protein deprivation and postnatal recovery on the myenteric plexus of the rat esophagus. METHODS: Three groups of young Wistar rats (aged 42 d) were studied: normalfed (N42)...AIM:To evaluate effects of preand postnatal protein deprivation and postnatal recovery on the myenteric plexus of the rat esophagus. METHODS: Three groups of young Wistar rats (aged 42 d) were studied: normalfed (N42), proteindeprived (D42), and proteinrecovered (R42). The myenteric neurons of their esophagi were evaluated by histochemical reactions for nicotinamide adenine dinucleotide (NADH), nitrergic neurons (NADPH)diaphorase and acetylcholinesterase (AChE), immunohistochemical reaction for vasoactive intestinal polypeptide (VIP), and ultrastructural analysis by transmission electron microscopy.RESULTS: The cytoplasms of large and medium neurons from the N42 and R42 groups were intensely reactive for NADH. Only a few large neurons from the D42 group exhibited this aspect. NADPH detected in the D42 group exhibited low reactivity. The AChE reactivity was diffuse in neurons from the D42 and R42 groups. The density of large and small varicosities detected by immunohistochemical staining of VIP was low in ganglia from the D42 group. In many neurons from the D42 group, the double membrane of the nuclear envelope and the perinuclear cisterna were not detectable. NADH and NADPH histochemistry revealed no group differences in the prof ile of nerve cell perikarya (ranging from 200 to 400 μm2).CONCLUSION: Protein deprivation causes a delay in neuronal maturation but postnatal recovery can almost completely restore the normal morphology of myenteric neurons.展开更多
The alates of the green peach aphid, Myzus persicae, were daily trapped from the air from late October through early January and carried to laboratory for determination of fungal infection by individually rearing them...The alates of the green peach aphid, Myzus persicae, were daily trapped from the air from late October through early January and carried to laboratory for determination of fungal infection by individually rearing them for 7 d on detached cabbage leaves in Petri dishes. Among 760 alates trapped, 266 (35%) were found carrying various fungal pathogens, 87.3% of them died due to mycosis during the first 3-day period of rearing and the rest died in the following two days. Most of the deaths of the alates were attributed to entomophthoralean fungi, taking 94.4%, and the rest were the hyphomycetous fungus Beauveria bassiana. Among the Entomophthorales-killed alates, P. neoaphidis took a proportion of 66.1%, Z. anhuiensis 22.6%, E. planchoniana 9.7%, and N. fresenii 1.6%, respectively. Two alates were found suffering from cross infection of two fungal species, i.e. P. neoaphidis with Z. anhuiensis and N. fresenii, respectively. The results represent the first report on transmission of aphid-pathogenic fungi展开更多
Nipah virus (NiV), a zoonotic paramyxovirus belonging to the genus Henipavirus, is classified as a Biosafety Level-4 pathogen based on its high pathogenicity in humans and the lack of available vaccines or therapeutic...Nipah virus (NiV), a zoonotic paramyxovirus belonging to the genus Henipavirus, is classified as a Biosafety Level-4 pathogen based on its high pathogenicity in humans and the lack of available vaccines or therapeutics. Since its initial emergence in 1998 in Malaysia, this virus has become a great threat to domestic animals and humans. Sporadic outbreaks and person-to-person transmission over the past two decades have resulted in hundreds of human fatalities. Epidemiological surveys have shown that NiV is distributed in Asia, Africa, and the South Pacific Ocean, and is transmitted by its natural reservoir, Pteropid bats. Numerous efforts have been made to analyze viral protein function and structure to develop feasible strategies for drug design. Increasing surveillance and preventative measures for the viral infectious disease are urgently needed.展开更多
Plant jasmonoyl-L-isoleucine(JA-Ile)is a major defense signal against insect feeding,but whether or how insect salivary effectors suppress JA-Ile synthesis and thus facilitate viral transmission in the plant phloem re...Plant jasmonoyl-L-isoleucine(JA-Ile)is a major defense signal against insect feeding,but whether or how insect salivary effectors suppress JA-Ile synthesis and thus facilitate viral transmission in the plant phloem remains elusive.Insect carboxylesterases(CarEs)are the third major family of detoxification enzymes.Here,we identify a new leafhopper CarE,CarE10,that is specifically expressed in salivary glands and is secreted into the rice phloem as a saliva component.Leafhopper CarE10 directly binds to rice jasmonate resistant 1(JAR1)and promotes its degradation by the proteasome system.Moreover,the direct association of CarE10 with JAR1 clearly impairs JAR1 enzyme activity for conversion of JA to JA-Ile in an in vitro JAIle synthesis system.A devastating rice reovirus activates and promotes the co-secretion of virions and CarE10 via virus-induced vesicles into the saliva-storing salivary cavities of the leafhopper vector and ultimately into the rice phloem to establish initial infection.Furthermore,a virus-mediated increase in CarE10 secretion or overexpression of CarE10 in transgenic rice plants causes reduced levels of JAR1 and thus suppresses JA-Ile synthesis,promoting host attractiveness to insect vectors and facilitating initial viral transmission.Our findings provide insight into how the insect salivary protein CarE10 suppresses host JA-Ile synthesis to promote initial virus transmission in the rice phloem.展开更多
The change of cholinergic transmission of p-amyloid protein (P-AP) treated rats was studied by intracerebral microdialysis sampling combined with HPLC analysis. β-AP1-40 was injected into nucleus basalis magnocellula...The change of cholinergic transmission of p-amyloid protein (P-AP) treated rats was studied by intracerebral microdialysis sampling combined with HPLC analysis. β-AP1-40 was injected into nucleus basalis magnocellularis (NBM). Passive avoidance response test (step-down test) and delayed alternation task were used for memory testing. The impairment of memory after injection of β-AP1-40 into NBM exhibited mainly the deficiency of short-term working memory. One week after injection of β-AP1-40 the release of acetylcholine (ACh) from frontal cortex of freely-moving rats decreased significantly, and the response of cholinergic nerve ending to the action of high [K+] solution was rather weak. In control animals the percentage of increase of ACh-release during behavioral performance was 57%, while in β-AP1-40-treated rats it was 34%. The temporary increase of the ACh-release of the rat put into a new place was also significantly diminished in β-AP1-40 -treated rats. The results show that the injection of β-AP1-40 into NBM impairs the cholinergic transmission in frontal cortex, and the impairment of cholinergic transmission may be the main cause of the deficit of working memory.展开更多
Emergent coronaviruses(CoVs)such as SARS-CoV and MERS-CoV have posed great threats to public health worldwide over the past two decades.Currently,the emergence of SARS-CoV-2 as a pandemic causes greater public health ...Emergent coronaviruses(CoVs)such as SARS-CoV and MERS-CoV have posed great threats to public health worldwide over the past two decades.Currently,the emergence of SARS-CoV-2 as a pandemic causes greater public health concern.CoV diversity is due to the large size and replication mechanisms of the genomes together with having bats as their optimum natural hosts.The ecological behavior and unique immune characteristics of bats are optimal for the homologous recombination of CoVs.The relationship of spatial structural characteristics of the spike protein,a protein that is critical for recognition by host receptors,in different CoVs may provide evidence in explaining the coevolution of CoVs and their hosts.This information may help to enhance our understanding of CoV evolution and thus provide part of the basis of preparations for any future outbreaks.展开更多
基金supported by NSF BREAD IOS:1109989,USDA-NRI 2007-04567,NSFDBI-0606596USDA-ARS 764 CRIS projects1907-101-16,1907-21000-024/25-00DNIH/NCRR funded Yeast Resource Center P41RR01182
文摘Plant viruses in the families Luteoviridae and Geminiviridae are phloem restricted and are transmitted in a persistent,circulative manner by homopteran insects.Using fluorescence 2-D difference gel electrophoresis to compare the proteomes of F2 genotypes of Schizaphis graminum segregating for virus transmission ability,we recently discovered a panel of protein biomarkers that predict vector competency.Here we used aphid and whitefly nucleotide and expressed sequence tag database mining to test whether these biomarkers are conserved in other homopteran insects.S.graminum gene homologs that shared a high degree of predicted amino acid identity were discovered in two other aphid species and in the whitefly Bemisia tabaci.Selected reaction monitoring mass spectrometry was used to validate the expression of these biomarkers proteins in multiple aphid vector species.The conservation of these proteins in multiple insect taxa that transmit plant viruses along the circulative transmission pathway creates the opportunity to use these biomarkers to rapidly identify insect populations that are the most efficient vectors and allow them to be targeted for control prior to the spread of virus within a crop.
基金supported by the fund of the Key Science and Technology Research during the 10th Five-Year-Plan period in Heilongjiang Province, China(GB05B501-2).
文摘Mucosal immunity plays an important role in protecting pigs against transmissible gastroenteritis virus (TGEV) infection. To elicit mucosal immune response against TGEV, we developed a surface antigen display system using the poly-γ- glutamate synthetase A (pgsA) protein of Bacillus subtilis as an anchoring matrix to express recombinant fusion proteins of pgsA and nucleocapsid protein of TGEV in Lactobacillus casei. Surface location of fusion protein was verified by ELISA and indirect immunofluorescence test. Oral and intranasal inoculations of pregnant sow and mice with recombinant L. casei resulted in high levels of serum immunoglobulin G (IgG) and secretory immunoglobulin A (slgA) against recombinant N protein as demonstrated by ELISA. More importantly, the level of specific slgA in colostrum significantly increased compared with that of IgG. The serum IgG levels of the piglets increased after suckling colostrum produced by sows was previously inoculated with recombinant L. casei. These results indicate that immunization with recombinant L. casei expressing TGEV N protein on its surface elicited high levels of specific slgA and circulating IgG against TGEV N protein.
基金supported by grants to Y.Wu and L.Z.from the Shaanxi Key Research and Development Program(No.2022KWZ-11)the Ministry of Science and Technology Plans to Introduce High-End Foreign Experts(G2022172015L)the National Natural Science Foundation of China(Nos.32372501 and 31701761).
文摘The infection of host plants by many different viruses causes reactive oxygen species(Ros)accumulation and yellowing symptoms,but the mechanisms through which plant viruses counteract RoS-mediated immunity to facilitate infection and symptom development have not been fully elucidated.Most plant viruses are transmitted by insect vectors in the field,but the molecular mechanisms underlying virus-host-insect interactions are unclear.In this study,we investigated the interactions among wheat,barley yellow dwarf virus(BYDV),and its aphid vector and found that the BYDV movement protein(MP)interacts with both wheat catalases(CATs)and the 26S proteasomeubiquitin receptor non-ATPase regulatorysubunit2homolog(PSMD2)to facilitate the 26S proteasome-mediateddegradation of CATs,promotingviral infection,disease symptom development,and aphid transmission.Overexpression of the BYDV MP gene in wheat enhanced the degradation of CATs,which leading to increased accumulation of ROS and thereby enhanced viral infection.Interestingly,transgenic wheat lines overexpressing BYDV MP showed significantly reduced proliferation of wingless aphids and an increased number of winged aphids.Consistent with this observation,silencing of CAT genes also enhanced viral accumulation and reduced the proliferation of wingless aphids but increased the occurrence of winged aphids.In contrast,transgenic wheat plants overexpressing TaCAT1 exhibited the opposite changes and showed increases in grain size and weight upon infection with BYDV.Biochemical assays demonstrated that BYDV MP interacts with PSMD2 and promotes 26S proteasome-mediated degradation of TaCAT1 likely in a ubiquitination-independent manner.Collectively,our study reveals a molecular mechanism by which a plant virus manipulates the Ros production system of host plants to facilitate viral infection and transmission,shedding new light on the sophisticated interactions among viruses,host plants,and insect vectors.
基金Supported partly by the National Natural Science Foundation of China(No.20042002)and the Ministry of Science and Technology of China
文摘Owing to the high oxygen-respiration in the brain of mammals, oxidative damage to prion protein hasbeen suggested to be an additional factor. A large body of intriguing features of scrapie and prion diseases haveprovided multiple lines of indirect chemistry evidence, suggesting that the infectious agents may be putative forms ofsequence-specific prion radicals (SSPR) and/or their immediate precursors in the transmissible spongiform encepha-lopathies (TSE). Here a molecular mechanism corresponding to the self-replication of scrapie protein mediated byprion free-radical processes, consonant with "protein-only" hypotheses is proposed. This new theory may not onlyaid our understanding of the occurrence of prions, but also provides new insight into the possible chemistry principlesunderlying the neurodegenerative disorders. It is anticipated that future studies based on this suggestion and chem-istry principles of genetic diseases may allow us to determine an effective approach to stop mad cow disease and itshuman version, new variant of Creutzfeldt-Jakob disease (v CJD).
基金supported by the grants from the National Key Research and Development Plan of China(2021YFC2300200,2020YFC1200104,and 2018YFA0507202)The National Natural Science Foundation of China(32188101,31825001,81730063,81961160737,and 82102389)+5 种基金Tsinghua University Spring Breeze Fund(2020Z99CFG017)Shenzhen San-Ming Project for prevention and research on vector-borne diseases(SZSM201611064)the Yunnan Cheng gong expert workstation(202005AF150034)Innovation Team Project of Yunnan Science and Technology Department(202105AE160020)Tsinghua-Foshan Innovation Special Fund(2022THFS6124)Young Elite Scientists Sponsorship Program(2021QNRC001).
文摘Mosquito-borne viruses(MBVs)are a large class of viruses transmitted mainly through mosquito bites,including dengue virus,Zika virus,Japanese encephalitis virus,West Nile virus,and chikungunya virus,which pose a major threat to the health of people around the world.With global warming and extended human activities,the incidence of many MBVs has increased significantly.Mosquito saliva contains a variety of bioactive protein components.These not only enable blood feeding but also play a crucial role in regulating local infection at the bite site and the remote dissemination of MBVs as well as in remodeling the innate and adaptive immune responses of host vertebrates.Here,we review the physiological functions of mosquito salivary proteins(MSPs)in detail,the influence and the underlying mechanism of MSPs on the transmission of MBVs,and the current progress and issues that urgently need to be addressed in the research and development of MSP-based MBV transmission blocking vaccines.
基金This research was supported by the National Natural Science Foundation of China(32072423).
文摘Sap-sucking insects often transmit plant viruses but also carry insect viruses,which infect insects but not plants.The impact of such insect viruses on insect host biology and ecology is largely unknown.Here,we identified a novel insect-specific virus carried by brown citrus aphid(Aphis citricidus),which we tentatively named Aphis citricidus picornavirus(AcPV).Phylogenetic analysis discovered a monophyletic cluster with AcPV and other unassigned viruses,suggesting that these viruses represent a new family in order Picornavirales.Systemic infection with AcPV triggered aphid antiviral immunity mediated by RNA interference,resulting in asymptomatic tolerance.Importantly,we found that AcPV was transmitted horizontally by secretion of the salivary gland into the feeding sites of plants.AcPV influenced aphid stylet behavior during feeding and increased the time required for intercellular penetration,thus promoting its transmission among aphids with plants as an intermediate site.The gene expression results suggested that this mechanism was linked with transcription of salivary protein genes and plant defense hormone signaling.Together,our results show that the horizontal transmission of AcPV in brown citrus aphids evolved in a manner similar to that of the circulative transmission of plant viruses by insect vectors,thus providing a new ecological perspective on the activity of insect-specific viruses found in aphids and improving the understanding of insect virus ecology.
基金This work was supported by Ministry of Education of the People's Republic of China Chinese Universities Scientific Fund(No.Z1090121096,NWAFU)Ministry of Science and Technology of the People's Republic of China National Key R&D Program of China(2017YFC1200605).
文摘In a tritrophic context of plant-insect-entomopathogen,plants play important roles in modulating the interaction of insects and their pathogenic viruses.Currently,the influence of plants on the transmission of insect viruses has been mainly studied on baculoviruses and some RNA viruses,whereas the impact of plants on other insect viruses is largely unknown.Here,we identified a new densovirus infecting the green peach aphid Myzus persicae and tested whether and how host plants influence the transmission of the aphid densovirus.The complete single-stranded DNA genome of the virus,M.persicae densovirus 2,is 5727 nt and contains inverted terminal repeats.Transcription and phylogenetic analysis indicated that the virus was distinct from other a few identified aphid densoviruses.The virus abundance was detected highly in the intestinal tract of aphids,compared with the lower level of it in other tissues including head,embryo,and epidermis.Cabbage and pepper plants had no obvious effect on the vertical transmission and saliva-mediated horizontal transmission of the virus.However,the honeydew-mediated horizontal transmission among aphids highly depended on host plants(65%on cabbages versus 17%on peppers).Although the virus concentration in the honeydew produced by aphids between 2 plants was similar,the honeydew production of the infected aphids reared on peppers was dramatically reduced.Taken together,our results provide evidence that plants influence the horizontal transmission of a new densovirus in an aphid population by modulating honeydew secretion of aphids,suggesting plants may manipulate the spread of an aphid-pathogenic densovirus in nature.
基金supported by the grants from the Startup Fund for Distinguished Scholars, Nanjing Agricultural University, China
文摘Aphid is one of the most destructive insect pests on cultivated plants in temperate regions.Their piercing-sucking mouthparts and phloem feeding behavior directly damage crops and deplete plant nutrients.Potato(Solanum tuberosum L.)is one of the most important food sources on the planet,and several aphid species,e.g.,Myzus persicae(Sulzer)(green peach aphid)and Macrosiphum euphorbiae(Thomas)(potato aphid)(Hemiptera:Aphididae)colonize potato and transmit several economically important viruses.Aphid-transmitted potato viruses have been emerging all over the world as a very serious problem in potato production,inducing a wide variety of foliar and tuber symptoms,leading to severe yield reduction and loss of tuber quality.In this review,recent advances in understanding the interactions of potato viruses with their hosts,aphid vectors and the environment are described.
基金This work was supported by the National Key Basic Research of China(Grant No.TG2000016201)the National Natural Science Foundation of China(Grant No.30070498).
文摘Using 2-D electrophoresis and virus overlay assay, a 50-kDa protein (P50) exhibiting specific binding to purified virus particles of BYDV-GAV was found in the protein extracts from Schizaphis graminum and Sitobion avenae, two aphid species transmitting BYDV-GAV. P50 in the extracts of S. graminum was isolated by preparation electrophoresis and electro-eluted proteins from the gel slices for antiserum preparation. After feeding the antiserum through membrane, the transmission efficiencies of S. graminum and S. avenae for BYDV-GAV decreased significantly. It was suggested that P50 should be related with transmission pro- cess. Location of P50 was found at the plasma membrane surrounding the accessory salivary gland (ASG) in the head tissues of S. graminum by immunogold-labelling experiment. The ascertainment of the protein associated with virus transmission has a significance influence on further understanding the transmission mechanism and genetic engineering for resistant to vector transmission.
基金Supported by Conselho Nacional de Desenvolvimento Cientifico e Tecnologico - CNPq and FAPESP (Fundacao de Amparo a Pesquisa do Estado de Sao Paulo) grant, No. 04/00746-3
文摘AIM:To evaluate effects of preand postnatal protein deprivation and postnatal recovery on the myenteric plexus of the rat esophagus. METHODS: Three groups of young Wistar rats (aged 42 d) were studied: normalfed (N42), proteindeprived (D42), and proteinrecovered (R42). The myenteric neurons of their esophagi were evaluated by histochemical reactions for nicotinamide adenine dinucleotide (NADH), nitrergic neurons (NADPH)diaphorase and acetylcholinesterase (AChE), immunohistochemical reaction for vasoactive intestinal polypeptide (VIP), and ultrastructural analysis by transmission electron microscopy.RESULTS: The cytoplasms of large and medium neurons from the N42 and R42 groups were intensely reactive for NADH. Only a few large neurons from the D42 group exhibited this aspect. NADPH detected in the D42 group exhibited low reactivity. The AChE reactivity was diffuse in neurons from the D42 and R42 groups. The density of large and small varicosities detected by immunohistochemical staining of VIP was low in ganglia from the D42 group. In many neurons from the D42 group, the double membrane of the nuclear envelope and the perinuclear cisterna were not detectable. NADH and NADPH histochemistry revealed no group differences in the prof ile of nerve cell perikarya (ranging from 200 to 400 μm2).CONCLUSION: Protein deprivation causes a delay in neuronal maturation but postnatal recovery can almost completely restore the normal morphology of myenteric neurons.
基金This work was partially supported by the "Cheung Kong Scholars Programme', Ministry of Education, P. R. Chinathe National Natural Science Foundation of China (Grant Nos. 30070514 and 39870513).
文摘The alates of the green peach aphid, Myzus persicae, were daily trapped from the air from late October through early January and carried to laboratory for determination of fungal infection by individually rearing them for 7 d on detached cabbage leaves in Petri dishes. Among 760 alates trapped, 266 (35%) were found carrying various fungal pathogens, 87.3% of them died due to mycosis during the first 3-day period of rearing and the rest died in the following two days. Most of the deaths of the alates were attributed to entomophthoralean fungi, taking 94.4%, and the rest were the hyphomycetous fungus Beauveria bassiana. Among the Entomophthorales-killed alates, P. neoaphidis took a proportion of 66.1%, Z. anhuiensis 22.6%, E. planchoniana 9.7%, and N. fresenii 1.6%, respectively. Two alates were found suffering from cross infection of two fungal species, i.e. P. neoaphidis with Z. anhuiensis and N. fresenii, respectively. The results represent the first report on transmission of aphid-pathogenic fungi
基金supported by National Key Research and Development Program(2016YFC1200800)Advanced Customer Cultivation Project of Wuhan National Biosafety Laboratory,Chinese Academy of Sciences
文摘Nipah virus (NiV), a zoonotic paramyxovirus belonging to the genus Henipavirus, is classified as a Biosafety Level-4 pathogen based on its high pathogenicity in humans and the lack of available vaccines or therapeutics. Since its initial emergence in 1998 in Malaysia, this virus has become a great threat to domestic animals and humans. Sporadic outbreaks and person-to-person transmission over the past two decades have resulted in hundreds of human fatalities. Epidemiological surveys have shown that NiV is distributed in Asia, Africa, and the South Pacific Ocean, and is transmitted by its natural reservoir, Pteropid bats. Numerous efforts have been made to analyze viral protein function and structure to develop feasible strategies for drug design. Increasing surveillance and preventative measures for the viral infectious disease are urgently needed.
基金supported by the National Key Research and Development Program of China(2023YFD1400300)the Natural Science Foundation of Fujian Province(2021J01065 and 2022J01127)the National Natural Science Foundation of China(nos.61831920103014 and 32202270).
文摘Plant jasmonoyl-L-isoleucine(JA-Ile)is a major defense signal against insect feeding,but whether or how insect salivary effectors suppress JA-Ile synthesis and thus facilitate viral transmission in the plant phloem remains elusive.Insect carboxylesterases(CarEs)are the third major family of detoxification enzymes.Here,we identify a new leafhopper CarE,CarE10,that is specifically expressed in salivary glands and is secreted into the rice phloem as a saliva component.Leafhopper CarE10 directly binds to rice jasmonate resistant 1(JAR1)and promotes its degradation by the proteasome system.Moreover,the direct association of CarE10 with JAR1 clearly impairs JAR1 enzyme activity for conversion of JA to JA-Ile in an in vitro JAIle synthesis system.A devastating rice reovirus activates and promotes the co-secretion of virions and CarE10 via virus-induced vesicles into the saliva-storing salivary cavities of the leafhopper vector and ultimately into the rice phloem to establish initial infection.Furthermore,a virus-mediated increase in CarE10 secretion or overexpression of CarE10 in transgenic rice plants causes reduced levels of JAR1 and thus suppresses JA-Ile synthesis,promoting host attractiveness to insect vectors and facilitating initial viral transmission.Our findings provide insight into how the insect salivary protein CarE10 suppresses host JA-Ile synthesis to promote initial virus transmission in the rice phloem.
基金the National Natural Science Foundation of China (Grant Nos. 3699930140 & 39870733).
文摘The change of cholinergic transmission of p-amyloid protein (P-AP) treated rats was studied by intracerebral microdialysis sampling combined with HPLC analysis. β-AP1-40 was injected into nucleus basalis magnocellularis (NBM). Passive avoidance response test (step-down test) and delayed alternation task were used for memory testing. The impairment of memory after injection of β-AP1-40 into NBM exhibited mainly the deficiency of short-term working memory. One week after injection of β-AP1-40 the release of acetylcholine (ACh) from frontal cortex of freely-moving rats decreased significantly, and the response of cholinergic nerve ending to the action of high [K+] solution was rather weak. In control animals the percentage of increase of ACh-release during behavioral performance was 57%, while in β-AP1-40-treated rats it was 34%. The temporary increase of the ACh-release of the rat put into a new place was also significantly diminished in β-AP1-40 -treated rats. The results show that the injection of β-AP1-40 into NBM impairs the cholinergic transmission in frontal cortex, and the impairment of cholinergic transmission may be the main cause of the deficit of working memory.
文摘Emergent coronaviruses(CoVs)such as SARS-CoV and MERS-CoV have posed great threats to public health worldwide over the past two decades.Currently,the emergence of SARS-CoV-2 as a pandemic causes greater public health concern.CoV diversity is due to the large size and replication mechanisms of the genomes together with having bats as their optimum natural hosts.The ecological behavior and unique immune characteristics of bats are optimal for the homologous recombination of CoVs.The relationship of spatial structural characteristics of the spike protein,a protein that is critical for recognition by host receptors,in different CoVs may provide evidence in explaining the coevolution of CoVs and their hosts.This information may help to enhance our understanding of CoV evolution and thus provide part of the basis of preparations for any future outbreaks.