Standardized Ginkgo biloba leaf extract has been used in clinical trials for its beneficial effects on brain func- tions, particularly in dementia. Substantial experimental evidences indicated that Ginkgo biloba leaf ...Standardized Ginkgo biloba leaf extract has been used in clinical trials for its beneficial effects on brain func- tions, particularly in dementia. Substantial experimental evidences indicated that Ginkgo biloba leaf extract (EGB) protected neuronal cells from a variety of insults. We investigated the effect of EGB on cognitive ability and protein kinase B (PKB) activity in hippocampal neuronal cells of dementia model rats. Rats received an intra- peritoneal injection of D-galactose to induce dementia. Forty-eight Spraque-Dawley rats were randomly divided into six groups, including the control group, D-galactose group (Gal), low-dose EGB group (EGB-L), mid-dose EGB group (EGB-M), high-dose EGB group (EGB-H) and treatment group. The EGB-L, EGB-M and EGB-H groups were administered with EGB and D-galactose simultaneously. Y-maze, cresyl violet staining, TUNEL assays and immunohistochemistry staining were performed to detect learning and memory abilities, morpho- logical changes in the hippocampus, neuronal apoptosis and the expressing level of phospho-PKB, respectively. Rats in the Gal group showed decreased abilities of learning and memory, and hippocampal pyramidal cell layer was damaged, while EGB administration improved learning and memory abilities. The Gal group exhibited many stained, condensed nuclei and micronuclei, either isolated or within the cytoplasm of cells (39.5 ± 1.4). Apoptotic cells decreased in the groups of EGB-L (35.9±0.9), EGB-M (16.8± 1.0) and EGB-H (10.1±0.8), and there were statistical significances compared with the Gal group. Immunoreactivity of phospho-PKB was localized diffusely throughout the cytosol of cells in all groups, while the immunoreactivity of the Gal group was weak. EGB signifi- cantly attenuated learning and memory impairment in a dose-dependent manner, while it could decrease the nmber of TUNEL-positive cells, and increase the activity of PKB. Our results demonstrated that EGB attenuated memory impairment and cell apoptosis in galactose-induced dementia model rats by activating PKB.展开更多
Objective To explore the possible neurophysiologic mechanisms of propofol and N-methyl-Daspartate(NMDA) receptor antagonist against learning-memory impairment of depressed rats without olfactory bulbs. Methods Models ...Objective To explore the possible neurophysiologic mechanisms of propofol and N-methyl-Daspartate(NMDA) receptor antagonist against learning-memory impairment of depressed rats without olfactory bulbs. Methods Models of depressed rats without olfactory bulbs were established. For the factorial design in analysis of variance, two intervention factors were included: electroconvulsive shock groups(with and without a course of electroconvulsive shock) and drug intervention groups [intraperotoneal(ip) injection of saline, NMDA receptor antagonist MK-801 and propofol. A total of 60 adult depressed rats without olfactory bulbs were randomly divided into 6 experimental groups(n=10 per group): ip injection of 5 ml saline; ip injection of 5 ml of 10 mg/kg MK-801; ip injection of 5 ml of 10 mg/kg MK-801 and a course of electroconvulsive shock; ip injection of 5 ml of 200 mg/kg propofol; ip injection of 5 ml of 200 mg/kg propofol and a course of electroconvulsive shock; and ip injection of 5 ml saline and a course of electroconvulsive shock. The learning-memory abilities of the rats was evaluated by the Morris water maze test. The content of glutamic acid in the hippocampus was detected by high-performance liquid chromatography. The expressions of p-AT8Ser202 in the hippocampus were determined by Western blot analysis. Results Propofol, MK-801 or electroconvulsive shock alone induced learning-memory impairment in depressed rats, as proven by extended evasive latency time and shortened space probe time. Glutamic acid content in the hippocampus of depressed rats was significantly up-regulated by electroconvulsive shock and down-regulated by propofol, but MK-801 had no significant effect on glutamic acid content. Levels ofphosphorylated Tau protein p-AT8Ser202 in the hippocampus was up-regulated by electroconvulsive shock but was reduced by propofol and MK-801 alone. Propofol prevented learning-memory impairment and reduced glutamic acid content and p-AT8Ser202 levels induced by electroconvulsive shock. Conclusion Electroconvulsive shock might reduce learning-memory impairment caused by protein Tau hyperphosphorylation in depressed rats by down-regulating glutamate content.展开更多
文摘Standardized Ginkgo biloba leaf extract has been used in clinical trials for its beneficial effects on brain func- tions, particularly in dementia. Substantial experimental evidences indicated that Ginkgo biloba leaf extract (EGB) protected neuronal cells from a variety of insults. We investigated the effect of EGB on cognitive ability and protein kinase B (PKB) activity in hippocampal neuronal cells of dementia model rats. Rats received an intra- peritoneal injection of D-galactose to induce dementia. Forty-eight Spraque-Dawley rats were randomly divided into six groups, including the control group, D-galactose group (Gal), low-dose EGB group (EGB-L), mid-dose EGB group (EGB-M), high-dose EGB group (EGB-H) and treatment group. The EGB-L, EGB-M and EGB-H groups were administered with EGB and D-galactose simultaneously. Y-maze, cresyl violet staining, TUNEL assays and immunohistochemistry staining were performed to detect learning and memory abilities, morpho- logical changes in the hippocampus, neuronal apoptosis and the expressing level of phospho-PKB, respectively. Rats in the Gal group showed decreased abilities of learning and memory, and hippocampal pyramidal cell layer was damaged, while EGB administration improved learning and memory abilities. The Gal group exhibited many stained, condensed nuclei and micronuclei, either isolated or within the cytoplasm of cells (39.5 ± 1.4). Apoptotic cells decreased in the groups of EGB-L (35.9±0.9), EGB-M (16.8± 1.0) and EGB-H (10.1±0.8), and there were statistical significances compared with the Gal group. Immunoreactivity of phospho-PKB was localized diffusely throughout the cytosol of cells in all groups, while the immunoreactivity of the Gal group was weak. EGB signifi- cantly attenuated learning and memory impairment in a dose-dependent manner, while it could decrease the nmber of TUNEL-positive cells, and increase the activity of PKB. Our results demonstrated that EGB attenuated memory impairment and cell apoptosis in galactose-induced dementia model rats by activating PKB.
基金Supported by the National Natural Science Foundation(30972831)the China Postdoctoral Science Foundation(2013M530880)
文摘Objective To explore the possible neurophysiologic mechanisms of propofol and N-methyl-Daspartate(NMDA) receptor antagonist against learning-memory impairment of depressed rats without olfactory bulbs. Methods Models of depressed rats without olfactory bulbs were established. For the factorial design in analysis of variance, two intervention factors were included: electroconvulsive shock groups(with and without a course of electroconvulsive shock) and drug intervention groups [intraperotoneal(ip) injection of saline, NMDA receptor antagonist MK-801 and propofol. A total of 60 adult depressed rats without olfactory bulbs were randomly divided into 6 experimental groups(n=10 per group): ip injection of 5 ml saline; ip injection of 5 ml of 10 mg/kg MK-801; ip injection of 5 ml of 10 mg/kg MK-801 and a course of electroconvulsive shock; ip injection of 5 ml of 200 mg/kg propofol; ip injection of 5 ml of 200 mg/kg propofol and a course of electroconvulsive shock; and ip injection of 5 ml saline and a course of electroconvulsive shock. The learning-memory abilities of the rats was evaluated by the Morris water maze test. The content of glutamic acid in the hippocampus was detected by high-performance liquid chromatography. The expressions of p-AT8Ser202 in the hippocampus were determined by Western blot analysis. Results Propofol, MK-801 or electroconvulsive shock alone induced learning-memory impairment in depressed rats, as proven by extended evasive latency time and shortened space probe time. Glutamic acid content in the hippocampus of depressed rats was significantly up-regulated by electroconvulsive shock and down-regulated by propofol, but MK-801 had no significant effect on glutamic acid content. Levels ofphosphorylated Tau protein p-AT8Ser202 in the hippocampus was up-regulated by electroconvulsive shock but was reduced by propofol and MK-801 alone. Propofol prevented learning-memory impairment and reduced glutamic acid content and p-AT8Ser202 levels induced by electroconvulsive shock. Conclusion Electroconvulsive shock might reduce learning-memory impairment caused by protein Tau hyperphosphorylation in depressed rats by down-regulating glutamate content.