Spinal and bulbar muscular atrophy is a neurodegenerative disease caused by extended CAG trinucleotide repeats in the androgen receptor gene,which encodes a ligand-dependent transcription facto r.The mutant androgen r...Spinal and bulbar muscular atrophy is a neurodegenerative disease caused by extended CAG trinucleotide repeats in the androgen receptor gene,which encodes a ligand-dependent transcription facto r.The mutant androgen receptor protein,characterized by polyglutamine expansion,is prone to misfolding and forms aggregates in both the nucleus and cytoplasm in the brain in spinal and bulbar muscular atrophy patients.These aggregates alter protein-protein interactions and compromise transcriptional activity.In this study,we reported that in both cultured N2a cells and mouse brain,mutant androgen receptor with polyglutamine expansion causes reduced expression of mesencephalic astrocyte-de rived neurotrophic factor.Overexpressio n of mesencephalic astrocyte-derived neurotrophic factor amelio rated the neurotoxicity of mutant androgen receptor through the inhibition of mutant androgen receptor aggregation.Conversely.knocking down endogenous mesencephalic astrocyte-derived neurotrophic factor in the mouse brain exacerbated neuronal damage and mutant androgen receptor aggregation.Our findings suggest that inhibition of mesencephalic astrocyte-derived neurotrophic factor expression by mutant androgen receptor is a potential mechanism underlying neurodegeneration in spinal and bulbar muscular atrophy.展开更多
Retinitis pigmentosa is a group of inherited diseases that lead to retinal degeneration and photoreceptor cell death.However,there is no effective treatment for retinitis pigmentosa caused by PDE6B mutation.Adeno-asso...Retinitis pigmentosa is a group of inherited diseases that lead to retinal degeneration and photoreceptor cell death.However,there is no effective treatment for retinitis pigmentosa caused by PDE6B mutation.Adeno-associated virus(AAV)-mediated gene therapy is a promising strategy for treating retinitis pigmentosa.The aim of this study was to explore the molecular mechanisms by which AAV2-PDE6B rescues retinal function.To do this,we injected retinal degeneration 10(rd10)mice subretinally with AAV2-PDE6B and assessed the therapeutic effects on retinal function and structure using dark-and light-adapted electroretinogram,optical coherence tomography,and immunofluorescence.Data-independent acquisition-mass spectrometry-based proteomic analysis was conducted to investigate protein expression levels and pathway enrichment,and the results from this analysis were verified by real-time polymerase chain reaction and western blotting.AAV2-PDE6B injection significantly upregulated PDE6βexpression,preserved electroretinogram responses,and preserved outer nuclear layer thickness in rd10 mice.Differentially expressed proteins between wild-type and rd10 mice were closely related to visual perception,and treating rd10 mice with AAV2-PDE6B restored differentially expressed protein expression to levels similar to those seen in wild-type mice.Kyoto Encyclopedia of Genes and Genome analysis showed that the differentially expressed proteins whose expression was most significantly altered by AAV2-PDE6B injection were enriched in phototransduction pathways.Furthermore,the phototransductionrelated proteins Pde6α,Rom1,Rho,Aldh1a1,and Rbp1 exhibited opposite expression patterns in rd10 mice with or without AAV2-PDE6B treatment.Finally,Bax/Bcl-2,p-ERK/ERK,and p-c-Fos/c-Fos expression levels decreased in rd10 mice following AAV2-PDE6B treatment.Our data suggest that AAV2-PDE6B-mediated gene therapy promotes phototransduction and inhibits apoptosis by inhibiting the ERK signaling pathway and upregulating Bcl-2/Bax expression in retinitis pigmentosa.展开更多
Aim: To investigate the effect of abrogating heat shock protein (HSP) 70 expression by antisense HSP70 oligonucleotides treatment on human androgen-independent prostate cancer cell line PC-3m growth. Methods: PC-3m ce...Aim: To investigate the effect of abrogating heat shock protein (HSP) 70 expression by antisense HSP70 oligonucleotides treatment on human androgen-independent prostate cancer cell line PC-3m growth. Methods: PC-3m cells were treated with 0-16 μmol/L antisense HSP70 oligomers for 0-100 hr. Cell growth inhibition was analyzed using a trypan blue dye exclusion test. Apoptotic cells were detected and confirmed by flow cytometric analysis and DNA fragmentation analysis. The protein expression of HSP70 and bcl-2 affected by antisense HSP70 oligomers were determined using Western blot. Results: Antisense HSP70 oligomer induced apoptosis and then inhibited proliferation of PC-3m cells in a dose- and time-dependent manner. Ladder-like patterns of DNA fragments were observed in PC-3m cells treated with 10 μmol/L antisense HSP70 oligomer for 48 hr or 8 μmol/L for 72 hr on agarose gel electrophoresis. Antisense HSP70 oligomer pretreatment enhanced the subsequent induction of apoptosis by heat shock in PC-3m cells. In addition, undetectable HSP70 expression was observed at a concentration of 10 μmol/L antisense HSP70 oligomer treatment for 48 hr or 8 μmol/L for 72 hr in Western blot, which was paralleled by decreased expression levels of anti-apoptotic protein bcl-2. Conclusion: HSP70 antisense oligomer treatment abrogates the expression of HSP70, which may disrupt HSP70-bcl-2-interactions and further down-regulate bcl-2 expression, in turn inducing apoptosis and inhibiting cell growth in PC-3m cells.展开更多
Anacardic acid (AA) is a mixture of 2-hydroxy-6-alkylbenzoic acid homologs. It is widely regarded as a non-specific histone acetyltransferase inhibitor of p300. The effects and the mechanisms of AA in LNCaP cells (...Anacardic acid (AA) is a mixture of 2-hydroxy-6-alkylbenzoic acid homologs. It is widely regarded as a non-specific histone acetyltransferase inhibitor of p300. The effects and the mechanisms of AA in LNCaP cells (prostate cancer cells) remain unknown. To investigate the effect of AA on LNCaP cells, we had carried out several experiments and found that AA inhibits LNCaP cell proliferation, induces G1/S cell cycle arrest and apoptosis of LNCaP cell. The mechanisms via which AA acts on LNCaP cells may be due to the following aspects. First, AA can regulate p300 transcription and protein level except for its mechanisms regulating function of p300 through post-translational modification in LNCaP cells. Second, AA can activate p53 through increasing the phosphorylation of p53 on Serl 5 in LNCaP cells. AA can selectively activate p21 (target genes of p53). Third, AA can down-regulates androgen receptor (All) through supressing p300. Our study suggests that AA has multiple anti-tumor activities in LNCaP cells and warrants further investigation.展开更多
Aim: To investigate the altered expression of apoptosis pathway genes of prostate cancer cells treated by radiation and androgen withdrawal and whether the combined treatment may induce additive apoptosis. Methods: An...Aim: To investigate the altered expression of apoptosis pathway genes of prostate cancer cells treated by radiation and androgen withdrawal and whether the combined treatment may induce additive apoptosis. Methods: Androgen sensitive prostate cancer cell line LNCaP was cultured and treated by radiation, androgen withdrawal and combination of the two. Apoptosis was determined using apoptotic cells staining and mononuclear cell direct cytotox-icity assay. The total RNA were extracted and harvested. cDNA probes were prepared and labeled with biotin-16-dUTP and then hybridized to commercially available cDNA arrays, including apoptosis pathway-specific genes. The expression of important gene was further determined using RT-PCR. Results: Radiation induced additive apoptosis of prostate cancer cells; androgen withdrawal exhibited synergetic action. TNFRSF8 variant 2, DFFA, LTbR, mdm2, Myd88, TNFRSF14 and TNFSF4 mRNA were up regulated by radiation, while Survivin and Bar mRNA were down regulated. Mcl-1, TNFRSF14, MyD88 and TNFSF4 mRNA were up regulated by androgen withdrawal, while Bar, Survivin and TRAIL-R3 mRNA were down regulated. Conclusion: Radiation and androgen withdrawal altered the expression of apoptosis pathway genes of prostate cancer cells in different patterns, which may contribute to the additive apoptotic effect induced by the combined treatment.展开更多
In critical care medicine,sepsis is a dangerous systemic condition that is highly prevalent and is associated with high morbidity and mortality rates^([1]).The high mortality rate associated with sepsis is closely rel...In critical care medicine,sepsis is a dangerous systemic condition that is highly prevalent and is associated with high morbidity and mortality rates^([1]).The high mortality rate associated with sepsis is closely related to multi-organ dysfunction,with heart injury being particularly critical and considered the starting point of multi-organ injury^([2]).展开更多
Background The reproductive performance of chickens mainly depends on the development of follicles.Abnor-mal follicle development can lead to decreased reproductive performance and even ovarian disease among chick-ens...Background The reproductive performance of chickens mainly depends on the development of follicles.Abnor-mal follicle development can lead to decreased reproductive performance and even ovarian disease among chick-ens.Chicken is the only non-human animal with a high incidence of spontaneous ovarian cancer.In recent years,the involvement of circRNAs in follicle development and atresia regulation has been confirmed.Results In the present study,we used healthy and atretic chicken follicles for circRNA RNC-seq.The results showed differential expression of circRALGPS2.It was then confirmed that circRALGPS2 can translate into a protein,named cir-cRALGPS2-212aa,which has IRES activity.Next,we found that circRALGPS2-212aa promotes apoptosis and autophagy in chicken granulosa cells by forming a complex with PARP1 and HMGB1.Conclusions Our results revealed that circRALGPS2 can regulate chicken granulosa cell apoptosis and autophagy through the circRALGPS2-212aa/PARP1/HMGB1 axis.展开更多
Traumatic brain injury is a severe health problem leading to autophagy and apoptosis in the brain.3,6-Dibromo-beta-fluoro-N-(3-methoxyphenyl)-9H-carbazole-9-propanamine(P7C3-A20)can be neuroprotective in various disea...Traumatic brain injury is a severe health problem leading to autophagy and apoptosis in the brain.3,6-Dibromo-beta-fluoro-N-(3-methoxyphenyl)-9H-carbazole-9-propanamine(P7C3-A20)can be neuroprotective in various diseases,including ischemic stroke and neurodegenerative diseases.However,whether P7C3-A20 has a therapeutic effect on traumatic brain injury and its possible molecular mechanisms are unclear.Therefore,in the present study,we investigated the therapeutic effects of P7C3-A20 on traumatic brain injury and explored the putative underlying molecular mechanisms.We established a traumatic brain injury rat model using a modified weight drop method.P7C3-A20 or vehicle was injected intraperitoneally after traumatic brain injury.Severe neurological deficits were found in rats after traumatic brain injury,with deterioration in balance,walking function,and learning memory.Furthermore,hematoxylin and eosin staining showed significant neuronal cell damage,while terminal deoxynucleotidyl transferase mediated dUTP nick end labeling staining indicated a high rate of apoptosis.The presence of autolysosomes was observed using transmission electron microscope.P7C3-A20 treatment reversed these pathological features.Western blotting showed that P7C3-A20 treatment reduced microtubule-associated protein 1 light chain 3-Ⅱ(LC3-Ⅱ)autophagy protein,apoptosis-related proteins(namely,Bcl-2/adenovirus E1B 19-kDa-interacting protein 3[BNIP3],and Bcl-2 associated x protein[Bax]),and elevated ubiquitin-binding protein p62(p62)autophagy protein expression.Thus,P7C3-A20 can treat traumatic brain injury in rats by inhibiting excessive autophagy and apoptosis.展开更多
BACKGROUND Prohibitin 1(PHB1)has been identified as an antiproliferative protein that is highly conserved and ubiquitously expressed,and it participates in a variety of essential cellular functions,including apoptosis...BACKGROUND Prohibitin 1(PHB1)has been identified as an antiproliferative protein that is highly conserved and ubiquitously expressed,and it participates in a variety of essential cellular functions,including apoptosis,cell cycle regulation,prolifera-tion,and survival.Emerging evidence indicates that PHB1 may play an important role in the progression of hepatocellular carcinoma(HCC).However,the role of PHB1 in HCC is controversial.AIM To investigate the effects of PHB1 on the proliferation and apoptosis of human HCC cells and the relevant mechanisms in vitro.METHODS HCC patients and healthy individuals were enrolled in this study according to the inclusion and exclusion criteria;then,PHB1 levels in the sera and liver tissues of these participates were determined using ELISA,RT-PCR,and immunohistoche-mistry.Human HepG2 and SMMC-7721 cells were transfected with the pEGFP-PHB1 plasmid and PHB1-specific shRNA(shRNA-PHB1)for 24-72 h.Cell prolif-eration was analysed with an MTT assay.Cell cycle progression and apoptosis were analysed using flow cytometry(FACS).The mRNA and protein expression levels of the cell cycle-related molecules p21,Cyclin A2,Cyclin E1,and CDK2 and the cell apoptosis-related molecules cytochrome C(Cyt C),p53,Bcl-2,Bax,caspase 3,and caspase 9 were measured by real-time PCR and Western blot,respectively.RESULTS Decreased levels of PHB1 were found in the sera and liver tissues of HCC patients compared to those of healthy individuals,and decreased PHB1 was positively correlated with low differentiation,TNM stage III-IV,and alpha-fetoprotein≥400μg/L.Overexpression of PHB1 significantly inhibited human HCC cell proliferation in a time-dependent manner.FACS revealed that the overexpression of PHB1 arrested HCC cells in the G0/G1 phase of the cell cycle and induced apoptosis.The proportion of cells in the G0/G1 phase was significantly increased and the proportion of cells in the S phase was decreased in HepG2 cells that were transfected with pEGFP-PHB1 compared with untreated control and empty vector-transfected cells.The percentage of apoptotic HepG2 cells that were transfected with pEGFP-PHB1 was 15.41%±1.06%,which was significantly greater than that of apoptotic control cells(3.65%±0.85%,P<0.01)and empty vector-transfected cells(4.21%±0.52%,P<0.01).Similar results were obtained with SMMC-7721 cells.Furthermore,the mRNA and protein expression levels of p53,p21,Bax,caspase 3,and caspase 9 were increased while the mRNA and protein expression levels of Cyclin A2,Cy-clin E1,CDK2,and Bcl-2 were decreased when PHB1 was overexpressed in human HCC cells.However,when PHB1 was upregulated in human HCC cells,Cyt C expression levels were increased in the cytosol and decreased in the mitochondria,which indicated that Cyt C had been released into the cytosol.Conversely,these effects were reversed when PHB1 was knocked down.CONCLUSION PHB1 inhibits human HCC cell viability by arresting the cell cycle and inducing cell apoptosis via activation of the p53-mediated mitochondrial pathway.展开更多
Objective Brain microvascular endothelial cells (BMECs) were found to shift from their usually inactive state to an active state in ischemic stroke (IS) and cause neuronal damage. Ginsenoside Rb1 (GRb1),a component de...Objective Brain microvascular endothelial cells (BMECs) were found to shift from their usually inactive state to an active state in ischemic stroke (IS) and cause neuronal damage. Ginsenoside Rb1 (GRb1),a component derived from medicinal plants,is known for its pharmacological benefits in IS,but its protective effects on BMECs have yet to be explored. This study aimed to investigate the potential protective effects of GRb1 on BMECs. Methods An in vitro oxygen-glucose deprivation/reperfusion (OGD/R) model was established to mimic ischemia-reperfusion (I/R) injury. Bulk RNA-sequencing data were analyzed by using the Human Autophagy Database and various bioinformatic tools,including gene set enrichment analysis (GSEA),Gene Ontology (GO) classification and enrichment analysis,Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis,protein-protein interaction network analysis,and molecular docking. Experimental validation was also performed to ensure the reliability of our findings. Results Rb1 had a protective effect on BMECs subjected to OGD/R injury. Specifically,GRb1 was found to modulate the interplay between oxidative stress,apoptosis,and autophagy in BMECs. Key targets such as sequestosome 1 (SQSTM1/p62),autophagy related 5 (ATG5),and hypoxia-inducible factor 1-alpha (HIF-1α) were identified,highlighting their potential roles in mediating the protective effects of GRb1 against IS-induced damage. Conclusion GRbl protects BMECs against OGD/R injury by influencing oxidative stress,apoptosis,and autophagy. The identification of SQSTM1/p62,ATG5,and HIF-1α as promising targets further supports the potential of GRb1 as a therapeutic agent for IS,providing a foundation for future research into its mechanisms and applications in IS treatment.展开更多
β-Sitosterol is a type of phytosterol that occurs naturally in plants.Previous studies have shown that it has anti-oxidant,anti-hyperlipidemic,anti-inflammatory,immunomodulatory,and anti-tumor effects,but it is unkno...β-Sitosterol is a type of phytosterol that occurs naturally in plants.Previous studies have shown that it has anti-oxidant,anti-hyperlipidemic,anti-inflammatory,immunomodulatory,and anti-tumor effects,but it is unknown whetherβ-sitosterol treatment reduces the effects of ischemic stroke.Here we found that,in a mouse model of ischemic stroke induced by middle cerebral artery occlusion,β-sitosterol reduced the volume of cerebral infarction and brain edema,reduced neuronal apoptosis in brain tissue,and alleviated neurological dysfunction;moreover,β-sitosterol increased the activity of oxygen-and glucose-deprived cerebral cortex neurons and reduced apoptosis.Further investigation showed that the neuroprotective effects ofβ-sitosterol may be related to inhibition of endoplasmic reticulum stress caused by intracellular cholesterol accumulation after ischemic stroke.In addition,β-sitosterol showed high affinity for NPC1L1,a key transporter of cholesterol,and antagonized its activity.In conclusion,β-sitosterol may help treat ischemic stroke by inhibiting neuronal intracellular cholesterol overload/endoplasmic reticulum stress/apoptosis signaling pathways.展开更多
Background:Myocardial infarction(MI)is associated with higher morbidity and mortality in the world,especially in cold weather.YBX1 is an RNA-binding protein that is required for pathological growth of cardiomyocyte by...Background:Myocardial infarction(MI)is associated with higher morbidity and mortality in the world,especially in cold weather.YBX1 is an RNA-binding protein that is required for pathological growth of cardiomyocyte by regulating cell growth and protein synthesis.But YBX1,as an individual RNA-binding protein,regulates cardiomyocytes through signaling cascades during myocardial infarction remain largely unexplored.Methods:In vivo,the mouse MI model was induced by ligating the left anterior descending coronary artery(LAD),and randomly divided into sham operation group,MI group,MI+YBX1 knockdown/overexpression group and MI+negative control(NC)group.The protective effect of YBX1 was verified by echocardiography and triphenyltetrazolium chloride staining.In vitro,mitochondrial-dependent apoptosis was investigated by using CCK8,TUNEL staining,reactive oxygen species(ROS)staining and JC-1 staining in hypoxic neonatal mouse cardiomyocytes(NMCMs).Results:YBX1 expression of cardiomyocytes was downregulated in a mouse model and a cellular model on the ischemic condition.Compared to mice induced by MI,YBX1 overexpression mediated by adeno-associated virus serotype 9(AAV9)vector reduced the infarcted size and improved cardiac function.Knockdown of endogenous YBX1 by shRNA partially aggravated ischemia-induced cardiac dysfunction.In hypoxic cardiomyocytes,YBX1 overexpression decreased lactic dehydrogenase(LDH)release,increased cell viability,and inhibited apoptosis by affecting the expression of apoptosis related proteins,while knockdown of endogenous YBX1 by siRNA had the opposite effect.Overexpression of YBX1 restored mitochondrial dysfunction in hypoxic NMCMs by increasing mitochondrial membrane potential and ATP content and decreasing ROS.In hypoxic NMCMs,YBX1 overexpression increased the expression of phosphorylated phosphatidylinositol 3 kinase(PI3K)/AKT,and the anti-apoptosis effect of YBX1 was eliminated t by LY294002,PI3K/AKT inhibitor.Conclusion:YBX1 protected the heart from ischemic damage by inhibiting the mitochondrial-dependent apoptosis through PI3K/AKT pathway.It is anticipated that YBX1 may serve as a novel therapeutic target for MI.展开更多
AIM:To investigate the effects of exogenous testosterone treatment on the choroidal parameters in patients with androgen deficiency.METHODS:Right eyes of 24 patients with androgen deficiency and 31 healthy volunteers ...AIM:To investigate the effects of exogenous testosterone treatment on the choroidal parameters in patients with androgen deficiency.METHODS:Right eyes of 24 patients with androgen deficiency and 31 healthy volunteers were included in the study.The eyes were scanned for subfoveal choroidal thickness(SFCT),choroidal vascularity index(CVI),choroidstromal area(C-SA),choroid-luminal area(C-LA),choroidstromal to luminal area ratio(CSLR),and the choroidal parameters within central 1500μm of the macula(CVI1500,C-LA1500,C-SA1500,and CSLR1500)by enhanced-depth imaging optical coherence tomography(EDI-OCT)at baseline,6th and 18th weeks of the exogenous testosterone treatment.RESULTS:The mean SFCT values of the androgen deficient groups and healthy controls were 307.7±27.0 and 303.2±37.2μm(P=0.8).However,CVI,C-SA,CSLR,CVI1500,C-LA1500,and CSLR1500 were significantly different between the groups(all P<0.01).At the 6th week visit after exogenous testosterone treatment,SFCT,CVI,C-LA,and C-SA were significantly decreased,and these parameters returned to baseline levels at the 18th-week visit(all P>0.05).However,CVI1500 and LA1500 significantly increased at the end of the follow-up period(P<0.001).CONCLUSION:CVI is lower in androgen-deficient patients than in healthy subjects.The alterations in the choroid during the testosterone peak are transient in the treatment of patients with androgen deficiency.However,the increase in CVI within the central 1500μm of the macula persists even after 4mo.展开更多
Background:Androgenic alopecia(AGA)is the most common type of hair loss in men,and there are many studies on the treatment of hair loss by platelet-rich plasma(PRP).The human scalp contains a huge microbiome,but its r...Background:Androgenic alopecia(AGA)is the most common type of hair loss in men,and there are many studies on the treatment of hair loss by platelet-rich plasma(PRP).The human scalp contains a huge microbiome,but its role in the process of hair loss remains unclear,and the relationship between PRP and the microbiome needs further study.Therefore,the purpose of this study was to investigate the effect of PRP treatment on scalp microbiota composition.Methods:We performed PRP treatment on 14 patients with AGA,observed their clinical efficacy,and collected scalp swab samples before and after treatment.The scalp microflora of AGA patients before and after treatment was characterized by amplifying the V3-V4 region of the 16 s RNA gene and sequencing for bacterial identification.Results:The results showed that PRP was effective in the treatment of AGA patients,and the hair growth increased significantly.The results of relative abundance analysis of microbiota showed that after treatment,g_Cutibacterium increased and g_Staphylococcus decreased,which played a stable role in scalp microbiota.In addition,g_Lawsonella decreased,indicating that the scalp oil production decreased after treatment.Conclusions:The findings suggest that PRP may play a role in treating AGA through scalp microbiome rebalancing.展开更多
Androgenic alopecia, also known as seborrheic alopecia, is the most common hair loss disorder in dermatology clinics, mainly characterized by hair follicle miniaturization and progressive hair loss. The etiology and p...Androgenic alopecia, also known as seborrheic alopecia, is the most common hair loss disorder in dermatology clinics, mainly characterized by hair follicle miniaturization and progressive hair loss. The etiology and pathogenesis of androgenic alopecia are not clear, but may be related to heredity and androgen metabolism. Currently, minoxidil and finasteride are the only two drugs approved by the U.S. Food and Drug Administration (FDA) for AGA treatment, other treatments include oral minoxidil, hair transplantation, low energy laser therapy (LLLT), platelet-rich plasma (PRP), Chinese medicine microneedles, and combination therapy. With the development of medicine and science, we have ushered in the era of biologics and targeted therapy. In recent years, a variety of signaling pathways for androgenic alopecia have been found, which may provide a basis for targeted therapy for androgenic alopecia.展开更多
Objective In this study,we analyzed the transcriptome sequences of Kupffer cells exposed to simulated microgravity for 3 d and conducted biological experiments to determine how microgravity initiates apoptosis in Kupf...Objective In this study,we analyzed the transcriptome sequences of Kupffer cells exposed to simulated microgravity for 3 d and conducted biological experiments to determine how microgravity initiates apoptosis in Kupffer cells.Methods Rotary cell culture system was used to construct a simulated microgravity model.GO and KEGG analyses were conducted using the DAVID database.GSEA was performed using the R language.The STRING database was used to conduct PPI analysis.qPCR was used to measure the IL1B,TNFA,CASP3,CASP9,and BCL2L11 mRNA expressions.Western Blotting was performed to detect the level of proteins CASP3 and CASP 9.Flow cytometry was used to detect apoptosis and mitochondrial membrane cells.Transmission electron microscopy was used to detect changes in the ultrastructure of Kupffer cells.Results Transcriptome Sequencing indicated that simulated microgravity affected apoptosis and the inflammatory state of Kupffer cells.Simulated microgravity improved the CASP3,CASP9,and BCL2L11 expressions in Kupffer cells.Annexin-V/PI and JC-1 assays showed that simulated microgravity promoted apoptosis in Kupffer cells.Simulated microgravity causes M1 polarization in Kupffer cells.Conclusion Our study found that simulated microgravity facilitated the apoptosis of Kupffer cells through the mitochondrial pathway and activated Kupffer cells into M1 polarization,which can secrete TNFA to promote apoptosis.展开更多
Following the publication,concerns have been raised about a number of figures in this article.An unexpected area of similarity was identified in terms of the cellular data,where the results from differently performed ...Following the publication,concerns have been raised about a number of figures in this article.An unexpected area of similarity was identified in terms of the cellular data,where the results from differently performed experiments were intended to have been shown,although the areas immediately surrounding this area featured comparatively different distributions of cells.In addition,the western blots in this article were presented with atypical,unusually shaped and possibly anomalous protein bands in many cases.展开更多
Following the publication,concerns have been raised about a number of figures in this article.An unexpected area of similarity was identified in terms of the cellular data,where the results from differently performed ...Following the publication,concerns have been raised about a number of figures in this article.An unexpected area of similarity was identified in terms of the cellular data,where the results from differently performed experiments were intended to have been shown,although the areas immediately surrounding this area featured comparatively different distributions of cells.In addition,the western blots in this article were presented with atypical,unusually shaped and possibly anomalous protein bands in many cases.展开更多
Following the publication,concerns have been raised about a number of figures in this article.An unexpected area of similarity was identified in terms of the cellular data,where the results from differently performed ...Following the publication,concerns have been raised about a number of figures in this article.An unexpected area of similarity was identified in terms of the cellular data,where the results from differently performed experiments were intended to have been shown,although the areas immediately surrounding this area featured comparatively different distributions of cells.In addition,the western blots in this article were presented with atypical,unusually shaped and possibly anomalous protein bands in many cases.展开更多
Recent studies have shown that cellular levels of polyamines(PAs)are significantly altered in neurodegenerative diseases.Evidence from in vivo animal and in vitro cell experiments suggests that the cellular levels of ...Recent studies have shown that cellular levels of polyamines(PAs)are significantly altered in neurodegenerative diseases.Evidence from in vivo animal and in vitro cell experiments suggests that the cellular levels of various PAs may play important roles in the central nervous system through the regulation of oxidative stress,mitochondrial metabolism,cellular immunity,and ion channel functions.Dysfunction of PA metabolism related enzymes also contributes to neuronal injury and cognitive impairment in many neurodegenerative diseases.Therefore,in the current work,evidence was collected to determine the possible associations between cellular levels of PAs,and related enzymes and the development of several neurodegenerative diseases,which could provide a new idea for the treatment of neurodegenerative diseases in the future.展开更多
基金supported by the National Key R&D Program of China,No.2021YFA0805200(to SY)the National Natural Science Foundation of China,No.31970954(to SY)two grants from the Department of Science and Technology of Guangdong Province,Nos.2021ZT09Y007,2020B121201006(both to XJL)。
文摘Spinal and bulbar muscular atrophy is a neurodegenerative disease caused by extended CAG trinucleotide repeats in the androgen receptor gene,which encodes a ligand-dependent transcription facto r.The mutant androgen receptor protein,characterized by polyglutamine expansion,is prone to misfolding and forms aggregates in both the nucleus and cytoplasm in the brain in spinal and bulbar muscular atrophy patients.These aggregates alter protein-protein interactions and compromise transcriptional activity.In this study,we reported that in both cultured N2a cells and mouse brain,mutant androgen receptor with polyglutamine expansion causes reduced expression of mesencephalic astrocyte-de rived neurotrophic factor.Overexpressio n of mesencephalic astrocyte-derived neurotrophic factor amelio rated the neurotoxicity of mutant androgen receptor through the inhibition of mutant androgen receptor aggregation.Conversely.knocking down endogenous mesencephalic astrocyte-derived neurotrophic factor in the mouse brain exacerbated neuronal damage and mutant androgen receptor aggregation.Our findings suggest that inhibition of mesencephalic astrocyte-derived neurotrophic factor expression by mutant androgen receptor is a potential mechanism underlying neurodegeneration in spinal and bulbar muscular atrophy.
基金supported by the National Natural Science Foundation of China,Nos.82071008(to BL)and 82004001(to XJ)Medical Science and Technology Program of Health Commission of Henan Province,No.LHGJ20210072(to RQ)Science and Technology Department of Henan Province,No.212102310307(to XJ)。
文摘Retinitis pigmentosa is a group of inherited diseases that lead to retinal degeneration and photoreceptor cell death.However,there is no effective treatment for retinitis pigmentosa caused by PDE6B mutation.Adeno-associated virus(AAV)-mediated gene therapy is a promising strategy for treating retinitis pigmentosa.The aim of this study was to explore the molecular mechanisms by which AAV2-PDE6B rescues retinal function.To do this,we injected retinal degeneration 10(rd10)mice subretinally with AAV2-PDE6B and assessed the therapeutic effects on retinal function and structure using dark-and light-adapted electroretinogram,optical coherence tomography,and immunofluorescence.Data-independent acquisition-mass spectrometry-based proteomic analysis was conducted to investigate protein expression levels and pathway enrichment,and the results from this analysis were verified by real-time polymerase chain reaction and western blotting.AAV2-PDE6B injection significantly upregulated PDE6βexpression,preserved electroretinogram responses,and preserved outer nuclear layer thickness in rd10 mice.Differentially expressed proteins between wild-type and rd10 mice were closely related to visual perception,and treating rd10 mice with AAV2-PDE6B restored differentially expressed protein expression to levels similar to those seen in wild-type mice.Kyoto Encyclopedia of Genes and Genome analysis showed that the differentially expressed proteins whose expression was most significantly altered by AAV2-PDE6B injection were enriched in phototransduction pathways.Furthermore,the phototransductionrelated proteins Pde6α,Rom1,Rho,Aldh1a1,and Rbp1 exhibited opposite expression patterns in rd10 mice with or without AAV2-PDE6B treatment.Finally,Bax/Bcl-2,p-ERK/ERK,and p-c-Fos/c-Fos expression levels decreased in rd10 mice following AAV2-PDE6B treatment.Our data suggest that AAV2-PDE6B-mediated gene therapy promotes phototransduction and inhibits apoptosis by inhibiting the ERK signaling pathway and upregulating Bcl-2/Bax expression in retinitis pigmentosa.
文摘Aim: To investigate the effect of abrogating heat shock protein (HSP) 70 expression by antisense HSP70 oligonucleotides treatment on human androgen-independent prostate cancer cell line PC-3m growth. Methods: PC-3m cells were treated with 0-16 μmol/L antisense HSP70 oligomers for 0-100 hr. Cell growth inhibition was analyzed using a trypan blue dye exclusion test. Apoptotic cells were detected and confirmed by flow cytometric analysis and DNA fragmentation analysis. The protein expression of HSP70 and bcl-2 affected by antisense HSP70 oligomers were determined using Western blot. Results: Antisense HSP70 oligomer induced apoptosis and then inhibited proliferation of PC-3m cells in a dose- and time-dependent manner. Ladder-like patterns of DNA fragments were observed in PC-3m cells treated with 10 μmol/L antisense HSP70 oligomer for 48 hr or 8 μmol/L for 72 hr on agarose gel electrophoresis. Antisense HSP70 oligomer pretreatment enhanced the subsequent induction of apoptosis by heat shock in PC-3m cells. In addition, undetectable HSP70 expression was observed at a concentration of 10 μmol/L antisense HSP70 oligomer treatment for 48 hr or 8 μmol/L for 72 hr in Western blot, which was paralleled by decreased expression levels of anti-apoptotic protein bcl-2. Conclusion: HSP70 antisense oligomer treatment abrogates the expression of HSP70, which may disrupt HSP70-bcl-2-interactions and further down-regulate bcl-2 expression, in turn inducing apoptosis and inhibiting cell growth in PC-3m cells.
文摘Anacardic acid (AA) is a mixture of 2-hydroxy-6-alkylbenzoic acid homologs. It is widely regarded as a non-specific histone acetyltransferase inhibitor of p300. The effects and the mechanisms of AA in LNCaP cells (prostate cancer cells) remain unknown. To investigate the effect of AA on LNCaP cells, we had carried out several experiments and found that AA inhibits LNCaP cell proliferation, induces G1/S cell cycle arrest and apoptosis of LNCaP cell. The mechanisms via which AA acts on LNCaP cells may be due to the following aspects. First, AA can regulate p300 transcription and protein level except for its mechanisms regulating function of p300 through post-translational modification in LNCaP cells. Second, AA can activate p53 through increasing the phosphorylation of p53 on Serl 5 in LNCaP cells. AA can selectively activate p21 (target genes of p53). Third, AA can down-regulates androgen receptor (All) through supressing p300. Our study suggests that AA has multiple anti-tumor activities in LNCaP cells and warrants further investigation.
文摘Aim: To investigate the altered expression of apoptosis pathway genes of prostate cancer cells treated by radiation and androgen withdrawal and whether the combined treatment may induce additive apoptosis. Methods: Androgen sensitive prostate cancer cell line LNCaP was cultured and treated by radiation, androgen withdrawal and combination of the two. Apoptosis was determined using apoptotic cells staining and mononuclear cell direct cytotox-icity assay. The total RNA were extracted and harvested. cDNA probes were prepared and labeled with biotin-16-dUTP and then hybridized to commercially available cDNA arrays, including apoptosis pathway-specific genes. The expression of important gene was further determined using RT-PCR. Results: Radiation induced additive apoptosis of prostate cancer cells; androgen withdrawal exhibited synergetic action. TNFRSF8 variant 2, DFFA, LTbR, mdm2, Myd88, TNFRSF14 and TNFSF4 mRNA were up regulated by radiation, while Survivin and Bar mRNA were down regulated. Mcl-1, TNFRSF14, MyD88 and TNFSF4 mRNA were up regulated by androgen withdrawal, while Bar, Survivin and TRAIL-R3 mRNA were down regulated. Conclusion: Radiation and androgen withdrawal altered the expression of apoptosis pathway genes of prostate cancer cells in different patterns, which may contribute to the additive apoptotic effect induced by the combined treatment.
基金supported by Jiangsu Traditional Chinese Medicine Science and Technology Development Program(MS2022099)The Postgraduate Research&Practice Innovation Program of Jiangsu Ocean University(No.KYCX2022-34)。
文摘In critical care medicine,sepsis is a dangerous systemic condition that is highly prevalent and is associated with high morbidity and mortality rates^([1]).The high mortality rate associated with sepsis is closely related to multi-organ dysfunction,with heart injury being particularly critical and considered the starting point of multi-organ injury^([2]).
基金This research was funded by The National Key Research and Development Program of China,grant number 2021YFD1300600China Agriculture Research System of MOF and MARA,grant number CARS-40+1 种基金Sichuan Science and Technology Program,grant number 2021YFYZ0007,2021YFYZ0031 and 2022YFYZ0005National Natural Science Foundation of China Grants,grant number 31972543.
文摘Background The reproductive performance of chickens mainly depends on the development of follicles.Abnor-mal follicle development can lead to decreased reproductive performance and even ovarian disease among chick-ens.Chicken is the only non-human animal with a high incidence of spontaneous ovarian cancer.In recent years,the involvement of circRNAs in follicle development and atresia regulation has been confirmed.Results In the present study,we used healthy and atretic chicken follicles for circRNA RNC-seq.The results showed differential expression of circRALGPS2.It was then confirmed that circRALGPS2 can translate into a protein,named cir-cRALGPS2-212aa,which has IRES activity.Next,we found that circRALGPS2-212aa promotes apoptosis and autophagy in chicken granulosa cells by forming a complex with PARP1 and HMGB1.Conclusions Our results revealed that circRALGPS2 can regulate chicken granulosa cell apoptosis and autophagy through the circRALGPS2-212aa/PARP1/HMGB1 axis.
基金supported by National Natural Science Foundation of China,No.32102745(to XL).
文摘Traumatic brain injury is a severe health problem leading to autophagy and apoptosis in the brain.3,6-Dibromo-beta-fluoro-N-(3-methoxyphenyl)-9H-carbazole-9-propanamine(P7C3-A20)can be neuroprotective in various diseases,including ischemic stroke and neurodegenerative diseases.However,whether P7C3-A20 has a therapeutic effect on traumatic brain injury and its possible molecular mechanisms are unclear.Therefore,in the present study,we investigated the therapeutic effects of P7C3-A20 on traumatic brain injury and explored the putative underlying molecular mechanisms.We established a traumatic brain injury rat model using a modified weight drop method.P7C3-A20 or vehicle was injected intraperitoneally after traumatic brain injury.Severe neurological deficits were found in rats after traumatic brain injury,with deterioration in balance,walking function,and learning memory.Furthermore,hematoxylin and eosin staining showed significant neuronal cell damage,while terminal deoxynucleotidyl transferase mediated dUTP nick end labeling staining indicated a high rate of apoptosis.The presence of autolysosomes was observed using transmission electron microscope.P7C3-A20 treatment reversed these pathological features.Western blotting showed that P7C3-A20 treatment reduced microtubule-associated protein 1 light chain 3-Ⅱ(LC3-Ⅱ)autophagy protein,apoptosis-related proteins(namely,Bcl-2/adenovirus E1B 19-kDa-interacting protein 3[BNIP3],and Bcl-2 associated x protein[Bax]),and elevated ubiquitin-binding protein p62(p62)autophagy protein expression.Thus,P7C3-A20 can treat traumatic brain injury in rats by inhibiting excessive autophagy and apoptosis.
基金the Key Research and Development Program of Shaanxi,No.2021SF-227 and No.2020SF-297the Natural Science Basic Research Program of Shaanxi,No.2023-JC-YB-770。
文摘BACKGROUND Prohibitin 1(PHB1)has been identified as an antiproliferative protein that is highly conserved and ubiquitously expressed,and it participates in a variety of essential cellular functions,including apoptosis,cell cycle regulation,prolifera-tion,and survival.Emerging evidence indicates that PHB1 may play an important role in the progression of hepatocellular carcinoma(HCC).However,the role of PHB1 in HCC is controversial.AIM To investigate the effects of PHB1 on the proliferation and apoptosis of human HCC cells and the relevant mechanisms in vitro.METHODS HCC patients and healthy individuals were enrolled in this study according to the inclusion and exclusion criteria;then,PHB1 levels in the sera and liver tissues of these participates were determined using ELISA,RT-PCR,and immunohistoche-mistry.Human HepG2 and SMMC-7721 cells were transfected with the pEGFP-PHB1 plasmid and PHB1-specific shRNA(shRNA-PHB1)for 24-72 h.Cell prolif-eration was analysed with an MTT assay.Cell cycle progression and apoptosis were analysed using flow cytometry(FACS).The mRNA and protein expression levels of the cell cycle-related molecules p21,Cyclin A2,Cyclin E1,and CDK2 and the cell apoptosis-related molecules cytochrome C(Cyt C),p53,Bcl-2,Bax,caspase 3,and caspase 9 were measured by real-time PCR and Western blot,respectively.RESULTS Decreased levels of PHB1 were found in the sera and liver tissues of HCC patients compared to those of healthy individuals,and decreased PHB1 was positively correlated with low differentiation,TNM stage III-IV,and alpha-fetoprotein≥400μg/L.Overexpression of PHB1 significantly inhibited human HCC cell proliferation in a time-dependent manner.FACS revealed that the overexpression of PHB1 arrested HCC cells in the G0/G1 phase of the cell cycle and induced apoptosis.The proportion of cells in the G0/G1 phase was significantly increased and the proportion of cells in the S phase was decreased in HepG2 cells that were transfected with pEGFP-PHB1 compared with untreated control and empty vector-transfected cells.The percentage of apoptotic HepG2 cells that were transfected with pEGFP-PHB1 was 15.41%±1.06%,which was significantly greater than that of apoptotic control cells(3.65%±0.85%,P<0.01)and empty vector-transfected cells(4.21%±0.52%,P<0.01).Similar results were obtained with SMMC-7721 cells.Furthermore,the mRNA and protein expression levels of p53,p21,Bax,caspase 3,and caspase 9 were increased while the mRNA and protein expression levels of Cyclin A2,Cy-clin E1,CDK2,and Bcl-2 were decreased when PHB1 was overexpressed in human HCC cells.However,when PHB1 was upregulated in human HCC cells,Cyt C expression levels were increased in the cytosol and decreased in the mitochondria,which indicated that Cyt C had been released into the cytosol.Conversely,these effects were reversed when PHB1 was knocked down.CONCLUSION PHB1 inhibits human HCC cell viability by arresting the cell cycle and inducing cell apoptosis via activation of the p53-mediated mitochondrial pathway.
基金funded by the Science and Technology Innovation Project of the China Academy of Chinese Medical Sciences(Nos.CI2021A04618 and CI2021A01401).
文摘Objective Brain microvascular endothelial cells (BMECs) were found to shift from their usually inactive state to an active state in ischemic stroke (IS) and cause neuronal damage. Ginsenoside Rb1 (GRb1),a component derived from medicinal plants,is known for its pharmacological benefits in IS,but its protective effects on BMECs have yet to be explored. This study aimed to investigate the potential protective effects of GRb1 on BMECs. Methods An in vitro oxygen-glucose deprivation/reperfusion (OGD/R) model was established to mimic ischemia-reperfusion (I/R) injury. Bulk RNA-sequencing data were analyzed by using the Human Autophagy Database and various bioinformatic tools,including gene set enrichment analysis (GSEA),Gene Ontology (GO) classification and enrichment analysis,Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis,protein-protein interaction network analysis,and molecular docking. Experimental validation was also performed to ensure the reliability of our findings. Results Rb1 had a protective effect on BMECs subjected to OGD/R injury. Specifically,GRb1 was found to modulate the interplay between oxidative stress,apoptosis,and autophagy in BMECs. Key targets such as sequestosome 1 (SQSTM1/p62),autophagy related 5 (ATG5),and hypoxia-inducible factor 1-alpha (HIF-1α) were identified,highlighting their potential roles in mediating the protective effects of GRb1 against IS-induced damage. Conclusion GRbl protects BMECs against OGD/R injury by influencing oxidative stress,apoptosis,and autophagy. The identification of SQSTM1/p62,ATG5,and HIF-1α as promising targets further supports the potential of GRb1 as a therapeutic agent for IS,providing a foundation for future research into its mechanisms and applications in IS treatment.
基金supported by the National Natural Science Foundation of China,Nos.82104158(to XT),31800887(to LY),31972902(to LY),82001422(to YL)China Postdoctoral Science Foundation,No.2020M683750(to LY)partially by Young Talent Fund of University Association for Science and Technology in Shaanxi Province of China,No.20200307(to LY).
文摘β-Sitosterol is a type of phytosterol that occurs naturally in plants.Previous studies have shown that it has anti-oxidant,anti-hyperlipidemic,anti-inflammatory,immunomodulatory,and anti-tumor effects,but it is unknown whetherβ-sitosterol treatment reduces the effects of ischemic stroke.Here we found that,in a mouse model of ischemic stroke induced by middle cerebral artery occlusion,β-sitosterol reduced the volume of cerebral infarction and brain edema,reduced neuronal apoptosis in brain tissue,and alleviated neurological dysfunction;moreover,β-sitosterol increased the activity of oxygen-and glucose-deprived cerebral cortex neurons and reduced apoptosis.Further investigation showed that the neuroprotective effects ofβ-sitosterol may be related to inhibition of endoplasmic reticulum stress caused by intracellular cholesterol accumulation after ischemic stroke.In addition,β-sitosterol showed high affinity for NPC1L1,a key transporter of cholesterol,and antagonized its activity.In conclusion,β-sitosterol may help treat ischemic stroke by inhibiting neuronal intracellular cholesterol overload/endoplasmic reticulum stress/apoptosis signaling pathways.
基金This project was supported by Science and technology project of Xiamen Medical College(K2023-08)the National Natural Science Foundation of China(No.82170299 to Shan Hongli,No.82003757 to Lyu Lifang).
文摘Background:Myocardial infarction(MI)is associated with higher morbidity and mortality in the world,especially in cold weather.YBX1 is an RNA-binding protein that is required for pathological growth of cardiomyocyte by regulating cell growth and protein synthesis.But YBX1,as an individual RNA-binding protein,regulates cardiomyocytes through signaling cascades during myocardial infarction remain largely unexplored.Methods:In vivo,the mouse MI model was induced by ligating the left anterior descending coronary artery(LAD),and randomly divided into sham operation group,MI group,MI+YBX1 knockdown/overexpression group and MI+negative control(NC)group.The protective effect of YBX1 was verified by echocardiography and triphenyltetrazolium chloride staining.In vitro,mitochondrial-dependent apoptosis was investigated by using CCK8,TUNEL staining,reactive oxygen species(ROS)staining and JC-1 staining in hypoxic neonatal mouse cardiomyocytes(NMCMs).Results:YBX1 expression of cardiomyocytes was downregulated in a mouse model and a cellular model on the ischemic condition.Compared to mice induced by MI,YBX1 overexpression mediated by adeno-associated virus serotype 9(AAV9)vector reduced the infarcted size and improved cardiac function.Knockdown of endogenous YBX1 by shRNA partially aggravated ischemia-induced cardiac dysfunction.In hypoxic cardiomyocytes,YBX1 overexpression decreased lactic dehydrogenase(LDH)release,increased cell viability,and inhibited apoptosis by affecting the expression of apoptosis related proteins,while knockdown of endogenous YBX1 by siRNA had the opposite effect.Overexpression of YBX1 restored mitochondrial dysfunction in hypoxic NMCMs by increasing mitochondrial membrane potential and ATP content and decreasing ROS.In hypoxic NMCMs,YBX1 overexpression increased the expression of phosphorylated phosphatidylinositol 3 kinase(PI3K)/AKT,and the anti-apoptosis effect of YBX1 was eliminated t by LY294002,PI3K/AKT inhibitor.Conclusion:YBX1 protected the heart from ischemic damage by inhibiting the mitochondrial-dependent apoptosis through PI3K/AKT pathway.It is anticipated that YBX1 may serve as a novel therapeutic target for MI.
文摘AIM:To investigate the effects of exogenous testosterone treatment on the choroidal parameters in patients with androgen deficiency.METHODS:Right eyes of 24 patients with androgen deficiency and 31 healthy volunteers were included in the study.The eyes were scanned for subfoveal choroidal thickness(SFCT),choroidal vascularity index(CVI),choroidstromal area(C-SA),choroid-luminal area(C-LA),choroidstromal to luminal area ratio(CSLR),and the choroidal parameters within central 1500μm of the macula(CVI1500,C-LA1500,C-SA1500,and CSLR1500)by enhanced-depth imaging optical coherence tomography(EDI-OCT)at baseline,6th and 18th weeks of the exogenous testosterone treatment.RESULTS:The mean SFCT values of the androgen deficient groups and healthy controls were 307.7±27.0 and 303.2±37.2μm(P=0.8).However,CVI,C-SA,CSLR,CVI1500,C-LA1500,and CSLR1500 were significantly different between the groups(all P<0.01).At the 6th week visit after exogenous testosterone treatment,SFCT,CVI,C-LA,and C-SA were significantly decreased,and these parameters returned to baseline levels at the 18th-week visit(all P>0.05).However,CVI1500 and LA1500 significantly increased at the end of the follow-up period(P<0.001).CONCLUSION:CVI is lower in androgen-deficient patients than in healthy subjects.The alterations in the choroid during the testosterone peak are transient in the treatment of patients with androgen deficiency.However,the increase in CVI within the central 1500μm of the macula persists even after 4mo.
基金supported by the Guangdong Enterprise Joint Fund(No.2022A1515220137)The Shenzhen Science and Technology Innovation Committee(No.JCYJ20220530141615035)the Internal project of Huazhong University of Science and Technology Union Shenzhen Hospital(Nos.YN2021042 and YN2021045)。
文摘Background:Androgenic alopecia(AGA)is the most common type of hair loss in men,and there are many studies on the treatment of hair loss by platelet-rich plasma(PRP).The human scalp contains a huge microbiome,but its role in the process of hair loss remains unclear,and the relationship between PRP and the microbiome needs further study.Therefore,the purpose of this study was to investigate the effect of PRP treatment on scalp microbiota composition.Methods:We performed PRP treatment on 14 patients with AGA,observed their clinical efficacy,and collected scalp swab samples before and after treatment.The scalp microflora of AGA patients before and after treatment was characterized by amplifying the V3-V4 region of the 16 s RNA gene and sequencing for bacterial identification.Results:The results showed that PRP was effective in the treatment of AGA patients,and the hair growth increased significantly.The results of relative abundance analysis of microbiota showed that after treatment,g_Cutibacterium increased and g_Staphylococcus decreased,which played a stable role in scalp microbiota.In addition,g_Lawsonella decreased,indicating that the scalp oil production decreased after treatment.Conclusions:The findings suggest that PRP may play a role in treating AGA through scalp microbiome rebalancing.
文摘Androgenic alopecia, also known as seborrheic alopecia, is the most common hair loss disorder in dermatology clinics, mainly characterized by hair follicle miniaturization and progressive hair loss. The etiology and pathogenesis of androgenic alopecia are not clear, but may be related to heredity and androgen metabolism. Currently, minoxidil and finasteride are the only two drugs approved by the U.S. Food and Drug Administration (FDA) for AGA treatment, other treatments include oral minoxidil, hair transplantation, low energy laser therapy (LLLT), platelet-rich plasma (PRP), Chinese medicine microneedles, and combination therapy. With the development of medicine and science, we have ushered in the era of biologics and targeted therapy. In recent years, a variety of signaling pathways for androgenic alopecia have been found, which may provide a basis for targeted therapy for androgenic alopecia.
文摘Objective In this study,we analyzed the transcriptome sequences of Kupffer cells exposed to simulated microgravity for 3 d and conducted biological experiments to determine how microgravity initiates apoptosis in Kupffer cells.Methods Rotary cell culture system was used to construct a simulated microgravity model.GO and KEGG analyses were conducted using the DAVID database.GSEA was performed using the R language.The STRING database was used to conduct PPI analysis.qPCR was used to measure the IL1B,TNFA,CASP3,CASP9,and BCL2L11 mRNA expressions.Western Blotting was performed to detect the level of proteins CASP3 and CASP 9.Flow cytometry was used to detect apoptosis and mitochondrial membrane cells.Transmission electron microscopy was used to detect changes in the ultrastructure of Kupffer cells.Results Transcriptome Sequencing indicated that simulated microgravity affected apoptosis and the inflammatory state of Kupffer cells.Simulated microgravity improved the CASP3,CASP9,and BCL2L11 expressions in Kupffer cells.Annexin-V/PI and JC-1 assays showed that simulated microgravity promoted apoptosis in Kupffer cells.Simulated microgravity causes M1 polarization in Kupffer cells.Conclusion Our study found that simulated microgravity facilitated the apoptosis of Kupffer cells through the mitochondrial pathway and activated Kupffer cells into M1 polarization,which can secrete TNFA to promote apoptosis.
文摘Following the publication,concerns have been raised about a number of figures in this article.An unexpected area of similarity was identified in terms of the cellular data,where the results from differently performed experiments were intended to have been shown,although the areas immediately surrounding this area featured comparatively different distributions of cells.In addition,the western blots in this article were presented with atypical,unusually shaped and possibly anomalous protein bands in many cases.
文摘Following the publication,concerns have been raised about a number of figures in this article.An unexpected area of similarity was identified in terms of the cellular data,where the results from differently performed experiments were intended to have been shown,although the areas immediately surrounding this area featured comparatively different distributions of cells.In addition,the western blots in this article were presented with atypical,unusually shaped and possibly anomalous protein bands in many cases.
文摘Following the publication,concerns have been raised about a number of figures in this article.An unexpected area of similarity was identified in terms of the cellular data,where the results from differently performed experiments were intended to have been shown,although the areas immediately surrounding this area featured comparatively different distributions of cells.In addition,the western blots in this article were presented with atypical,unusually shaped and possibly anomalous protein bands in many cases.
基金supported by grants from Zhejiang Provincial Natural Science Foundation of China(No.LY19H260003)Zhejiang Medical Health Science and Technology Project of China(No.2024KY1661).
文摘Recent studies have shown that cellular levels of polyamines(PAs)are significantly altered in neurodegenerative diseases.Evidence from in vivo animal and in vitro cell experiments suggests that the cellular levels of various PAs may play important roles in the central nervous system through the regulation of oxidative stress,mitochondrial metabolism,cellular immunity,and ion channel functions.Dysfunction of PA metabolism related enzymes also contributes to neuronal injury and cognitive impairment in many neurodegenerative diseases.Therefore,in the current work,evidence was collected to determine the possible associations between cellular levels of PAs,and related enzymes and the development of several neurodegenerative diseases,which could provide a new idea for the treatment of neurodegenerative diseases in the future.