Oil transport is greatly affected by heterogeneous pore–throat structures present in shale.It is therefore very important to accurately characterize pore–throat structures.Additionally,it remains unclear how pore–t...Oil transport is greatly affected by heterogeneous pore–throat structures present in shale.It is therefore very important to accurately characterize pore–throat structures.Additionally,it remains unclear how pore–throat structures affect oil transport capacity.In this paper,using finite element(FE)simulation and mathematical modeling,we calculated the hydrodynamic resistance for four pore–throat structure.In addition,the influence of pore throat structure on shale oil permeability is analyzed.According to the results,the hydrodynamic resistance of different pore throat structures can vary by 300%.The contribution of additional resistance caused by streamline bending is also in excess of 40%,even without slip length.Fur-thermore,Pore–throat structures can affect apparent permeability by more than 60%on the REV scale,and this influence increases with heterogeneity of pore size distribution,organic matter content,and organic matter number.Clearly,modeling shale oil flow requires consideration of porous–throat structure and additional resistance,otherwise oil recovery and flow capacity may be overestimated.展开更多
Isotope eff ects are pivotal in understanding silicate melt evaporation and planetary accretion processes.Based on the Hertz-Knudsen equation,the current theory often fails to predict observed isotope fractionations o...Isotope eff ects are pivotal in understanding silicate melt evaporation and planetary accretion processes.Based on the Hertz-Knudsen equation,the current theory often fails to predict observed isotope fractionations of laboratory experiments due to its oversimplified assumptions.Here,we point out that the Hertz-Knudsen-equation-based theory is incomplete for silicate melt evaporation cases and can only be used for situations where the vaporized species is identical to the one in the melt.We propose a new model designed for silicate melt evaporation under vacuum.Our model considers multiple steps including mass transfer,chemical reaction,and nucleation.Our derivations reveal a kinetic isotopic fractionation factor(KIFF orα)αour model=[m(^(1)species)/m(^(2)species)]^(0.5),where m(species)is the mass of the reactant of reaction/nucleation-limiting step or species of diffusion-limiting step and superscript 1 and 2 represent light and heavy isotopes,respectively.This model can eff ectively reproduce most reported KIFFs of laboratory experiments for various elements,i.e.,Mg,Si,K,Rb,Fe,Ca,and Ti.And,the KIFF-mixing model referring that an overall rate of evaporation can be determined by two steps jointly can account for the eff ects of low P_(H2)pressure,composition,and temperature.In addition,we find that chemical reactions,diffusion,and nucleation can control the overall rate of evaporation of silicate melts by using the fitting slope in ln(−ln f)versus ln(t).Notably,our model allows for the theoretical calculations of parameters like activation energy(E_(a)),providing a novel approach to studying compositional and environmental eff ects on evaporation processes,and shedding light on the formation and evolution of the proto-solar and Earth-Moon systems.展开更多
It is well-known that the equilibrium isotope fractionation of mercury(Hg)includes classical massdependent fractionations(MDFs)and nuclear volume effect(NVE)induced mass-independent fractionations(MIFs).However,the ef...It is well-known that the equilibrium isotope fractionation of mercury(Hg)includes classical massdependent fractionations(MDFs)and nuclear volume effect(NVE)induced mass-independent fractionations(MIFs).However,the effect of the NVE on these kinetic processes is not known.The total fractionations(MDFs+NVEinduced MIFs)of several representative Hg-incorporated substances were selected and calculated with ab initio calculations in this work for both equilibrium and kinetic processes.NVE-induced MIFs were calculated with scaled contact electron densities at the nucleus through systematic evaluations of their accuracy and errors using the Gaussian09 and DIRAC19 packages(named the electron density scaling method).Additionally,the NVE-induced kinetic isotope effect(KIE)of Hg isotopes are also calculated with this method for several representative Hg oxidation reactions by chlorine species.Total KIEs for 202 Hg/^(198)Hg ranging from−2.27‰to 0.96‰are obtained.Three anomalous^(202)Hg-enriched KIEs(δ^(202)Hg/^(198)Hg=0.83‰,0.94‰,and 0.96‰,)caused by the NVE are observed,which are quite different from the classical view(i.e.,light isotopes react faster than the heavy ones).The electron density scaling method we developed in this study can provide an easier way to calculate the NVE-induced KIEs for heavy isotopes and serve to better understand the fractionation mechanisms of mercury isotope systems.展开更多
Dissolved oxygen(DO)and apparent oxygen utilization(AOU)are essential parameters for evaluating the impact of climate change on marine ecosystems.In this study,we utilized data on DO and AOU collected from the Amundse...Dissolved oxygen(DO)and apparent oxygen utilization(AOU)are essential parameters for evaluating the impact of climate change on marine ecosystems.In this study,we utilized data on DO and AOU collected from the Amundsen Sea(western Antarctic)and the Cosmonaut Sea(eastern Antarctic)during the 38th Chinese National Antarctic Research Expedition,along with chlorophyll a(Chl a)data,to analyze the impact of primary production and the spatial distribution and structural features of water masses in these regions.The findings show that the standard deviation range of parallel DO samples is between 0.1 and 3.9μmol·L^(-1),meeting the precision criteria of the survey method.AOU values lower than 0.0μmol·L^(-1) were commonly observed in the surface waters of both regions,with the highest incidence in the polynya of Amundsen Sea,indicating a strong influence of high primary production.The Cosmonaut Sea exhibited the highest AOU values(higher than 160.0μmol·L^(-1))in the 75-500 m layer,while AOU value in the Amundsen Sea did not exceed 160.0μmol·L^(-1),suggesting potential upwelling of Circumpolar Deep Water to 100 m in the Cosmonaut Sea with minimal changes in its properties,whereas significant changes were noted in the properties of upwelling modified Circumpolar Deep Water in the Amundsen Sea.AOU values lower than 125.0μmol·L^(-1)were detected in the near-bottom waters of the Cosmonaut Sea,indicating the presence of Antarctic Bottom Water.展开更多
The aim of this study was to investigate the inter-fraction variations, patient comfort and knowledge at Charlotte Maxeke Johannesburg Academic Hospital (CMJAH). The differences in set-up that occurred between treatme...The aim of this study was to investigate the inter-fraction variations, patient comfort and knowledge at Charlotte Maxeke Johannesburg Academic Hospital (CMJAH). The differences in set-up that occurred between treatment sessions for the left sided breast patients were observed and recorded. Measurements of routine set-up variation for 24 patients were performed by matching the cone beam computed tomography (CBCT) and the planning computed tomography (CT). Scans of all five fractions per patient were used to quantify the setup variations with standard deviation (SD) in all the three directions (anterior posterior, left right, and superior inferior). The patients DIBH comfort and knowledge was also evaluated. The average translational errors for the anterior posterior (AP, z), left-right (LR, x), and Superior-inferior (SI, y) directions were 0.40 cm, 0.40 cm, and 0.40 cm, respectively. The translation variation of the three directions showed statistical significance (P < 0.05). On comfort and knowledge investigation, among all participants, 80% moderately agreed that the therapist’s instructions for operating the deep inspiration breath hold (DIBH) technique were easy to understand, and 63.33% indicated that their comfort with the DIBH technique was neutral or average. The inter-fraction variations in patients with left-sided breast cancer were qualitatively analyzed. Significant shifts between CBCT and planning CT images were observed. The daily treatment verification could assist accurate dose delivery.展开更多
Dissolved oxygen(DO)and apparent oxygen utilization(AOU)are crucial parameters for investigating marine ecosystem evolution and the marine environment.In this study,DO and AOU data were obtained and their spatial dist...Dissolved oxygen(DO)and apparent oxygen utilization(AOU)are crucial parameters for investigating marine ecosystem evolution and the marine environment.In this study,DO and AOU data were obtained and their spatial distribution characteristics were explored in the Cosmonaut Sea and Amundsen Sea in austral summer 2021.The standard deviation range of DO parallel samples was<0.1–3.7μmol·L–1,which met the accuracy requirements of the survey method.The DO concentration decreased sharply with water depth in the photic zone and increased slowly to the bottom.AOU in the surface layer of the two seas was significantly negatively correlated with chlorophyll a(p<0.01),and AOU was significantly lower in the south Cosmonaut Sea than in the north Cosmonaut Sea and Amundsen Sea(p<0.01).In austral summer,AOU was as low as<130μmol·L–1 in the nearshore Cosmonaut Sea with thicker Antarctic Surface Water down to ca.500 m.In early winter,AOU was lower than 50μmol·L–1 in the north Amundsen Sea in subsurface water(75–150 m).The unmodified Circumpolar Deep Water with high AOU(>160μmol·L–1)could surge up to ca.150–200 m in both seas,with stronger intrusion in the Amundsen Sea.The AOU in bottom water was significantly lower(p<0.01)in the Cosmonaut Sea(118.9±11.8μmol·L–1)than the Amundsen Sea(141.7±7.4μmol·L–1),indicating the stable existence of fresh oxygen-rich Antarctic Bottom Water in the Cosmonaut Sea.展开更多
BACKGROUND A limited number of studies have been conducted to test the magnitudes of the association between apparent treatment resistant hypertension(aTRH)and risk of cardiovascular disease(CVD).AIM To investigate th...BACKGROUND A limited number of studies have been conducted to test the magnitudes of the association between apparent treatment resistant hypertension(aTRH)and risk of cardiovascular disease(CVD).AIM To investigate the association between aTRH and risk of CVD and examine whether sex and age modify this association.METHODS We applied an observational analysis study design using data from the United States Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial(ALLHAT).ALLHAT recruited participants(n=25516)from 625 primary care settings throughout the United States,Canada,Puerto Rico,and United States Virgin Islands,aged 55 and older with hypertension and at least one additional risk factor for heart disease.aTRH was assessed from the year 2 visit.CVD event was defined as one of the following from the year 2 follow-up visit:Fatal or non-fatal myocardial infarction,coronary revascularization,angina,stroke,heart failure,or peripheral artery disease.Cox proportional hazards regression was used to examine the effect of aTRH on CVD risk.Potential modifications of sex and age on this association were examined on the multiplicative scale by interaction term and additive scale by joint effects and relative excess risk for interaction.RESULTS Of the total study participants(n=25516),5030 experienced a CVD event during a mean of 4.7 years follow-up.aTRH was associated with a 30%increase in risk of CVD compared to non-aTRH[hazards ratio(HR)=1.3,95%CI:1.19-1.42].Sex and age modified this relationship on both multiplicative and additive scales independently.Stratified by sex,aTRH was associated with a 64%increase in risk of CVD(HR=1.64,95%CI:1.43–1.88)in women,and a 13%increase in risk of CVD(HR=1.13,95%CI:1.01–1.27)in men.Stratified by age,aTRH had a stronger impact on the risk of CVD in participants aged<65(HR=1.53,95%CI:1.32–1.77)than it did in those aged≥65(HR=1.18,95%CI:1.05–1.32).Significant two-way interactions of sex and aTRH,and age and aTRH on risk of CVD were observed(P<0.05).The observed joint effect of aTRH and ages≥65 years(HR=1.85,95%CI:1.22–2.48)in males was less than what was expected for both additive and multiplicative models(HR=4.10,95%CI:3.63–4.57 and 4.88,95%CI:3.66–6.31),although three-way interaction of sex,age,and aTRH on the risk of CVD and coronary heart disease did not reach a statistical significance(P>0.05).CONCLUSION aTRH was significantly associated with an increased risk of CVD and this association was modified by both sex and age.Further studies are warranted to test these mechanisms.展开更多
Investigating spatiotemporal changes in crustal stress associated with major earthquakes has implications for understanding seismogenic processes.However,in individual earthquake cases,the characteristics of the stres...Investigating spatiotemporal changes in crustal stress associated with major earthquakes has implications for understanding seismogenic processes.However,in individual earthquake cases,the characteristics of the stress after it reaches its maximum value are rarely discussed.In this study,we use the 2021 M_S6.4 Yangbi earthquake in Yunnan,China and events of magnitudes M_L≥3.0 occurred in the surrounding area in the previous 11 years to investigate the spatiotemporal evolution of apparent stress.The results indicate that apparent stress began to increase in January 2015 and reached a maximum in January 2020.Apparent stress then remained at a high level until October 2020,after which it declined considerable.We suggest that the stress was in the accumulation stage from January 2015 to January 2020,and entered the meta-instability stage after October 2020.During the meta-instability stage,the zone of decreasing stress expanded continuously and the apparent stress increased around the Yangbi earthquake source region.These features are generally consistent with the results of laboratory rock stress experiments.We propose that apparent stress can be a good indicator for determining whether the stress at a specific location has entered the meta-instability stage and may become the epicenter of an impending strong earthquake.展开更多
The apparent activation energy,Eapp,is a common measure in thermal catalysis to discuss the activity and limiting steps of catalytic processes on solid-state materials.Recently,the electrocatalysis community adopted t...The apparent activation energy,Eapp,is a common measure in thermal catalysis to discuss the activity and limiting steps of catalytic processes on solid-state materials.Recently,the electrocatalysis community adopted the concept of Eappand combined it with the Butler-Volmer theory.Certain observations though,such as potential-dependent fluctuations of Eapp,are yet surprising because they conflict with the proposed linear decrease in Eappwith increasing overpotential.The most common explanation for this finding refers to coverage changes upon alterations in the temperature or the applied electrode potential.In the present contribution,it is demonstrated that the modulation of surface coverages cannot entirely explain potential-dependent oscillations of Eapp,and rather the impact of entropic contributions of the transition states has been overlooked so far.In the case of a nearly constant surface coverage,these entropic contributions can be extracted by a dedicated combination of Tafel plots and temperature-dependent experiments.展开更多
Poly-α-olefin(PAO)synthetic oil,a regular long-chain alkane produced from the catalytic polymerization ofα-olefin,is a high-quality lubricating base oil with huge market potential.In this study,PAO synthesis based o...Poly-α-olefin(PAO)synthetic oil,a regular long-chain alkane produced from the catalytic polymerization ofα-olefin,is a high-quality lubricating base oil with huge market potential.In this study,PAO synthesis based on the catalytic polymerization of 1-decene using the ionic liquid(IL)[Bmim]_(x)[C_(2)H_(5)NH_(3)]_(1-x)[Al_(2)Cl_(7)]as the catalyst was studied.Compared with the conventional catalyst[Bmim][Al_(2)Cl_(7)],the obtained PAO product incorporates more trimers and tetramers of 1-decene and contains few double-bond end groups,demonstrating a better catalytic system for PAO-10 production.The apparent polymerization kinetics of 1-decene in this catalytic system were studied based on the 1-decene concentration,catalyst concentration,and reaction temperature.An apparent kinetic equation for PAO formation was determined,providing a promising strategy for PAO production using 1-decene polymerization.展开更多
Personality distinguishes individuals’ patterns of feeling, thinking,and behaving. Predicting personality from small video series is an excitingresearch area in computer vision. The majority of the existing research ...Personality distinguishes individuals’ patterns of feeling, thinking,and behaving. Predicting personality from small video series is an excitingresearch area in computer vision. The majority of the existing research concludespreliminary results to get immense knowledge from visual and Audio(sound) modality. To overcome the deficiency, we proposed the Deep BimodalFusion (DBF) approach to predict five traits of personality-agreeableness,extraversion, openness, conscientiousness and neuroticism. In the proposedframework, regarding visual modality, the modified convolution neural networks(CNN), more specifically Descriptor Aggregator Model (DAN) areused to attain significant visual modality. The proposed model extracts audiorepresentations for greater efficiency to construct the long short-termmemory(LSTM) for the audio modality. Moreover, employing modality-based neuralnetworks allows this framework to independently determine the traits beforecombining them with weighted fusion to achieve a conclusive prediction of thegiven traits. The proposed approach attains the optimal mean accuracy score,which is 0.9183. It is achieved based on the average of five personality traitsand is thus better than previously proposed frameworks.展开更多
Apparent critical current density(j_(Ac)^(a))of garnet all-solid-state lithium metal symmetric cells(ASSLSCs)is a fundamental parameter for designing all-solid-state lithium metal batteries.Nevertheless,how much the p...Apparent critical current density(j_(Ac)^(a))of garnet all-solid-state lithium metal symmetric cells(ASSLSCs)is a fundamental parameter for designing all-solid-state lithium metal batteries.Nevertheless,how much the possible maximum apparent current density that a given ASSLSC system can endure and how to reveal this potential still require study.Herein,a capacity perturbation strategy aiming to better measure the possible maximum j_(Ac)^(a)is proposed for the first time.With garnet-based plane-surface structure ASSLSCs as an exemplification,the j_(Ac)^(a)is quite small when the capacity is dramatically large.Under a perturbed capacity of 0.001 mA h cm^(-2),the j_(Ac)^(a)is determined to be as high as 2.35 mA cm^(-2)at room temperature.This investigation demonstrates that the capacity perturbation strategy is a feasible strategy for measuring the possible maximum j_(Ac)^(a)of Li/solid electrolyte interface,and hopefully provides good references to explore the critical current density of other types of electrochemical systems.展开更多
The Rayleigh distillation isotope fractionation(RDIF) model is one of the most popular methods used in isotope geochemistry. Numerous isotope signals observed in geologic processes have been interpreted with this mode...The Rayleigh distillation isotope fractionation(RDIF) model is one of the most popular methods used in isotope geochemistry. Numerous isotope signals observed in geologic processes have been interpreted with this model. The RDIF model provides a simple mathematic solution for the reservoir-limited equilibrium isotope fractionation effect. Due to the reservoir effect, tremendously large isotope fractionations will always be produced if the reservoir is close to being depleted. However, in real situations, many prerequisites assumed in the RDIF model are often difficult to meet. For instance, it requires the relocated materials, which are removed step by step from one reservoir to another with different isotope compositions(i.e., with isotope fractionation), to be isotopically equilibrated with materials in the first reservoir simultaneously. This ‘‘quick equilibrium requirement’’ is indeed hard to meet if the first reservoir is sufficiently large or the removal step is fast. The whole first reservoir will often fail to re-attain equilibrium in time before the next removal starts.This problem led the RDIF model to fail to interpret isotope signals of many real situations. Here a diffusion-coupled and Rayleigh-like(i.e., reservoir-effect included) separation process is chosen to investigate this problem. We find that the final isotope fractionations are controlled by both the diffusion process and the reservoir effects via the disequilibrium separation process. Due to its complexity, we choose to use a numerical simulation method to solve this problem by developing specific computing codes for the working model.According to our simulation results, the classical RDIF model only governs isotope fractionations correctly at the final stages of separation when the reservoir scale(or thickness of the system) is reduced to the order of magnitude of the quotient of the diffusivity and the separation rate. The RDIF model fails in other situations and the isotope fractionations will be diffusion-limited when the reservoir is relatively large, or the separation rate is fast. We find that the effect of internal isotope distribution inhomogeneity caused by diffusion on the Rayleigh-like separation process is significant and cannot be ignored. This method can be applied to study numerous geologic and planetary processes involving diffusion-limited disequilibrium separation processes including partial melting,evaporation, mineral precipitation, core segregation, etc.Importantly, we find that far more information can be extracted through analyzing isotopic signals of such ‘‘disequilibrium’’processes than those of fully equilibrated ones, e.g., reservoir size and the separation rate. Such information may provide a key to correctly interpreting many isotope signals observed from geochemical and cosmochemical processes.展开更多
BACKGROUND Dopamine and cyclic adenosine monophosphate(cAMP)-regulated phosphop-rotein with an apparent Mr of 32000(DARPP-32)is a protein that is involved in regulating dopamine and cAMP signaling pathways in the brai...BACKGROUND Dopamine and cyclic adenosine monophosphate(cAMP)-regulated phosphop-rotein with an apparent Mr of 32000(DARPP-32)is a protein that is involved in regulating dopamine and cAMP signaling pathways in the brain.However,recent studies have shown that DARPP-32 is also expressed in other tissues,including colorectal cancer(CRC),where its function is not well understood.AIM To explore the effect of DARPP-32 on CRC progression.METHODS The expression levels of DARPP-32 were assessed in CRC tissues using both quantitative polymerase chain reaction and immunohistochemistry assays.The proliferative capacity of CRC cell lines was evaluated with Cell Counting Kit-8 and 5-ethynyl-2’-deoxyuridine assays,while apoptosis was measured by flow cytometry.The migratory and invasive potential of CRC cell lines were deter-mined using wound healing and transwell chamber assays.In vivo studies involved monitoring the growth rate of xenograft tumors.Finally,the underlying molecular mechanism of DARPP-32 was investigated through RNA-sequencing and western blot analyses.RESULTS DARPP-32 was frequently upregulated in CRC and associated with abnormal clinicopathological features in CRC.Overexpression of DARPP-32 was shown to promote cancer cell proliferation,migration,and invasion and reduce apoptosis.DARPP-32 knockdown resulted in the opposite functional effects.Mechanistically,DARPP-32 may regulate the phosphoinositide 3-kinase(PI3K)/AKT signaling pathway in order to carry out its biological function.CONCLUSION DARPP-32 promotes CRC progression via the PI3K/AKT signaling pathway.展开更多
基金supported by the National Natural Science Foundation of China(52274056,U22B2075).
文摘Oil transport is greatly affected by heterogeneous pore–throat structures present in shale.It is therefore very important to accurately characterize pore–throat structures.Additionally,it remains unclear how pore–throat structures affect oil transport capacity.In this paper,using finite element(FE)simulation and mathematical modeling,we calculated the hydrodynamic resistance for four pore–throat structure.In addition,the influence of pore throat structure on shale oil permeability is analyzed.According to the results,the hydrodynamic resistance of different pore throat structures can vary by 300%.The contribution of additional resistance caused by streamline bending is also in excess of 40%,even without slip length.Fur-thermore,Pore–throat structures can affect apparent permeability by more than 60%on the REV scale,and this influence increases with heterogeneity of pore size distribution,organic matter content,and organic matter number.Clearly,modeling shale oil flow requires consideration of porous–throat structure and additional resistance,otherwise oil recovery and flow capacity may be overestimated.
基金supported by Chinese NSF project(42,130,114)the strategic priority research program(B)of CAS(XDB41000000)the pre-research Project on Civil Aerospace Technologies No.D020202 funded by Chinese National Space Administration(CNSA)and Guizhou Provincial 2021 Science and Technology Subsidies(No.GZ2021SIG).
文摘Isotope eff ects are pivotal in understanding silicate melt evaporation and planetary accretion processes.Based on the Hertz-Knudsen equation,the current theory often fails to predict observed isotope fractionations of laboratory experiments due to its oversimplified assumptions.Here,we point out that the Hertz-Knudsen-equation-based theory is incomplete for silicate melt evaporation cases and can only be used for situations where the vaporized species is identical to the one in the melt.We propose a new model designed for silicate melt evaporation under vacuum.Our model considers multiple steps including mass transfer,chemical reaction,and nucleation.Our derivations reveal a kinetic isotopic fractionation factor(KIFF orα)αour model=[m(^(1)species)/m(^(2)species)]^(0.5),where m(species)is the mass of the reactant of reaction/nucleation-limiting step or species of diffusion-limiting step and superscript 1 and 2 represent light and heavy isotopes,respectively.This model can eff ectively reproduce most reported KIFFs of laboratory experiments for various elements,i.e.,Mg,Si,K,Rb,Fe,Ca,and Ti.And,the KIFF-mixing model referring that an overall rate of evaporation can be determined by two steps jointly can account for the eff ects of low P_(H2)pressure,composition,and temperature.In addition,we find that chemical reactions,diffusion,and nucleation can control the overall rate of evaporation of silicate melts by using the fitting slope in ln(−ln f)versus ln(t).Notably,our model allows for the theoretical calculations of parameters like activation energy(E_(a)),providing a novel approach to studying compositional and environmental eff ects on evaporation processes,and shedding light on the formation and evolution of the proto-solar and Earth-Moon systems.
基金This paper is supported by Chinese NSF project(42130114)the strategic priority research program(B)of CAS(XDB41000000)the pre-research Project on Civil Aerospace Technologies No.D020202 funded by Chinese National Space Administration(CNSA)。
文摘It is well-known that the equilibrium isotope fractionation of mercury(Hg)includes classical massdependent fractionations(MDFs)and nuclear volume effect(NVE)induced mass-independent fractionations(MIFs).However,the effect of the NVE on these kinetic processes is not known.The total fractionations(MDFs+NVEinduced MIFs)of several representative Hg-incorporated substances were selected and calculated with ab initio calculations in this work for both equilibrium and kinetic processes.NVE-induced MIFs were calculated with scaled contact electron densities at the nucleus through systematic evaluations of their accuracy and errors using the Gaussian09 and DIRAC19 packages(named the electron density scaling method).Additionally,the NVE-induced kinetic isotope effect(KIE)of Hg isotopes are also calculated with this method for several representative Hg oxidation reactions by chlorine species.Total KIEs for 202 Hg/^(198)Hg ranging from−2.27‰to 0.96‰are obtained.Three anomalous^(202)Hg-enriched KIEs(δ^(202)Hg/^(198)Hg=0.83‰,0.94‰,and 0.96‰,)caused by the NVE are observed,which are quite different from the classical view(i.e.,light isotopes react faster than the heavy ones).The electron density scaling method we developed in this study can provide an easier way to calculate the NVE-induced KIEs for heavy isotopes and serve to better understand the fractionation mechanisms of mercury isotope systems.
基金supported by the Scientific Research Fund of the Second Institute of Oceanography,MNR(Grant nos.JG2211 and JG2212)the National Polar Special Program“Impact and Response of Antarctic Seas to Climate Change”(Grant nos.IRASCC 01-01-02A and IRASCC 02-02)+1 种基金the National Key Research and Development Program of China(Grant no.2022YFE0136500)the National Natural Science Foundation of China(Grant no.41976228)。
文摘Dissolved oxygen(DO)and apparent oxygen utilization(AOU)are essential parameters for evaluating the impact of climate change on marine ecosystems.In this study,we utilized data on DO and AOU collected from the Amundsen Sea(western Antarctic)and the Cosmonaut Sea(eastern Antarctic)during the 38th Chinese National Antarctic Research Expedition,along with chlorophyll a(Chl a)data,to analyze the impact of primary production and the spatial distribution and structural features of water masses in these regions.The findings show that the standard deviation range of parallel DO samples is between 0.1 and 3.9μmol·L^(-1),meeting the precision criteria of the survey method.AOU values lower than 0.0μmol·L^(-1) were commonly observed in the surface waters of both regions,with the highest incidence in the polynya of Amundsen Sea,indicating a strong influence of high primary production.The Cosmonaut Sea exhibited the highest AOU values(higher than 160.0μmol·L^(-1))in the 75-500 m layer,while AOU value in the Amundsen Sea did not exceed 160.0μmol·L^(-1),suggesting potential upwelling of Circumpolar Deep Water to 100 m in the Cosmonaut Sea with minimal changes in its properties,whereas significant changes were noted in the properties of upwelling modified Circumpolar Deep Water in the Amundsen Sea.AOU values lower than 125.0μmol·L^(-1)were detected in the near-bottom waters of the Cosmonaut Sea,indicating the presence of Antarctic Bottom Water.
文摘The aim of this study was to investigate the inter-fraction variations, patient comfort and knowledge at Charlotte Maxeke Johannesburg Academic Hospital (CMJAH). The differences in set-up that occurred between treatment sessions for the left sided breast patients were observed and recorded. Measurements of routine set-up variation for 24 patients were performed by matching the cone beam computed tomography (CBCT) and the planning computed tomography (CT). Scans of all five fractions per patient were used to quantify the setup variations with standard deviation (SD) in all the three directions (anterior posterior, left right, and superior inferior). The patients DIBH comfort and knowledge was also evaluated. The average translational errors for the anterior posterior (AP, z), left-right (LR, x), and Superior-inferior (SI, y) directions were 0.40 cm, 0.40 cm, and 0.40 cm, respectively. The translation variation of the three directions showed statistical significance (P < 0.05). On comfort and knowledge investigation, among all participants, 80% moderately agreed that the therapist’s instructions for operating the deep inspiration breath hold (DIBH) technique were easy to understand, and 63.33% indicated that their comfort with the DIBH technique was neutral or average. The inter-fraction variations in patients with left-sided breast cancer were qualitatively analyzed. Significant shifts between CBCT and planning CT images were observed. The daily treatment verification could assist accurate dose delivery.
基金supported by the National Polar Special Program“Impact and Response of Antarctic Seas to Climate Change”(Grant nos.IRASCC 01-01-02A,IRASCC 02-02)the National Key Research and Development Program of China(Grant no.2022YFE0136500)the National Natural Science Foundation of China(Grant no.41976228).
文摘Dissolved oxygen(DO)and apparent oxygen utilization(AOU)are crucial parameters for investigating marine ecosystem evolution and the marine environment.In this study,DO and AOU data were obtained and their spatial distribution characteristics were explored in the Cosmonaut Sea and Amundsen Sea in austral summer 2021.The standard deviation range of DO parallel samples was<0.1–3.7μmol·L–1,which met the accuracy requirements of the survey method.The DO concentration decreased sharply with water depth in the photic zone and increased slowly to the bottom.AOU in the surface layer of the two seas was significantly negatively correlated with chlorophyll a(p<0.01),and AOU was significantly lower in the south Cosmonaut Sea than in the north Cosmonaut Sea and Amundsen Sea(p<0.01).In austral summer,AOU was as low as<130μmol·L–1 in the nearshore Cosmonaut Sea with thicker Antarctic Surface Water down to ca.500 m.In early winter,AOU was lower than 50μmol·L–1 in the north Amundsen Sea in subsurface water(75–150 m).The unmodified Circumpolar Deep Water with high AOU(>160μmol·L–1)could surge up to ca.150–200 m in both seas,with stronger intrusion in the Amundsen Sea.The AOU in bottom water was significantly lower(p<0.01)in the Cosmonaut Sea(118.9±11.8μmol·L–1)than the Amundsen Sea(141.7±7.4μmol·L–1),indicating the stable existence of fresh oxygen-rich Antarctic Bottom Water in the Cosmonaut Sea.
文摘BACKGROUND A limited number of studies have been conducted to test the magnitudes of the association between apparent treatment resistant hypertension(aTRH)and risk of cardiovascular disease(CVD).AIM To investigate the association between aTRH and risk of CVD and examine whether sex and age modify this association.METHODS We applied an observational analysis study design using data from the United States Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial(ALLHAT).ALLHAT recruited participants(n=25516)from 625 primary care settings throughout the United States,Canada,Puerto Rico,and United States Virgin Islands,aged 55 and older with hypertension and at least one additional risk factor for heart disease.aTRH was assessed from the year 2 visit.CVD event was defined as one of the following from the year 2 follow-up visit:Fatal or non-fatal myocardial infarction,coronary revascularization,angina,stroke,heart failure,or peripheral artery disease.Cox proportional hazards regression was used to examine the effect of aTRH on CVD risk.Potential modifications of sex and age on this association were examined on the multiplicative scale by interaction term and additive scale by joint effects and relative excess risk for interaction.RESULTS Of the total study participants(n=25516),5030 experienced a CVD event during a mean of 4.7 years follow-up.aTRH was associated with a 30%increase in risk of CVD compared to non-aTRH[hazards ratio(HR)=1.3,95%CI:1.19-1.42].Sex and age modified this relationship on both multiplicative and additive scales independently.Stratified by sex,aTRH was associated with a 64%increase in risk of CVD(HR=1.64,95%CI:1.43–1.88)in women,and a 13%increase in risk of CVD(HR=1.13,95%CI:1.01–1.27)in men.Stratified by age,aTRH had a stronger impact on the risk of CVD in participants aged<65(HR=1.53,95%CI:1.32–1.77)than it did in those aged≥65(HR=1.18,95%CI:1.05–1.32).Significant two-way interactions of sex and aTRH,and age and aTRH on risk of CVD were observed(P<0.05).The observed joint effect of aTRH and ages≥65 years(HR=1.85,95%CI:1.22–2.48)in males was less than what was expected for both additive and multiplicative models(HR=4.10,95%CI:3.63–4.57 and 4.88,95%CI:3.66–6.31),although three-way interaction of sex,age,and aTRH on the risk of CVD and coronary heart disease did not reach a statistical significance(P>0.05).CONCLUSION aTRH was significantly associated with an increased risk of CVD and this association was modified by both sex and age.Further studies are warranted to test these mechanisms.
基金supported by the China National Key R&D Program (No.2018YFC1503305)the Special fund of the Institute of Geophysics,China Earthquake Administration (No.DQJB22Z04)。
文摘Investigating spatiotemporal changes in crustal stress associated with major earthquakes has implications for understanding seismogenic processes.However,in individual earthquake cases,the characteristics of the stress after it reaches its maximum value are rarely discussed.In this study,we use the 2021 M_S6.4 Yangbi earthquake in Yunnan,China and events of magnitudes M_L≥3.0 occurred in the surrounding area in the previous 11 years to investigate the spatiotemporal evolution of apparent stress.The results indicate that apparent stress began to increase in January 2015 and reached a maximum in January 2020.Apparent stress then remained at a high level until October 2020,after which it declined considerable.We suggest that the stress was in the accumulation stage from January 2015 to January 2020,and entered the meta-instability stage after October 2020.During the meta-instability stage,the zone of decreasing stress expanded continuously and the apparent stress increased around the Yangbi earthquake source region.These features are generally consistent with the results of laboratory rock stress experiments.We propose that apparent stress can be a good indicator for determining whether the stress at a specific location has entered the meta-instability stage and may become the epicenter of an impending strong earthquake.
基金funding by the Ministry of Culture and Science of the Federal State of North Rhine-Westphalia (NRW Return Grant)CRC/TRR247:"Heterogeneous Oxidation Catalysis in the Liquid Phase"(388390466-TRR247),the RESOLV Cluster of Excellence,funded by the Deutsche Forschungsgemeinschaft under Germany’s Excellence StrategyEXC 2033-390677874-RESOLV+1 种基金the Center for Nanointegration (CENIDE)supported by COST (European Cooperation in Science and Technology)。
文摘The apparent activation energy,Eapp,is a common measure in thermal catalysis to discuss the activity and limiting steps of catalytic processes on solid-state materials.Recently,the electrocatalysis community adopted the concept of Eappand combined it with the Butler-Volmer theory.Certain observations though,such as potential-dependent fluctuations of Eapp,are yet surprising because they conflict with the proposed linear decrease in Eappwith increasing overpotential.The most common explanation for this finding refers to coverage changes upon alterations in the temperature or the applied electrode potential.In the present contribution,it is demonstrated that the modulation of surface coverages cannot entirely explain potential-dependent oscillations of Eapp,and rather the impact of entropic contributions of the transition states has been overlooked so far.In the case of a nearly constant surface coverage,these entropic contributions can be extracted by a dedicated combination of Tafel plots and temperature-dependent experiments.
基金supported by the Key Research and Development Program of Ningxia Autonomous Region (No.2023BFE01001)Tianjin Science and Technology Program (Nos.22ZYJDSS00060+2 种基金22YDTPJC00920)Program for Tianjin Innovative Research Team in Universities (No.TD13-5031)Tianjin 131 Research Team of Innovative Talents。
文摘Poly-α-olefin(PAO)synthetic oil,a regular long-chain alkane produced from the catalytic polymerization ofα-olefin,is a high-quality lubricating base oil with huge market potential.In this study,PAO synthesis based on the catalytic polymerization of 1-decene using the ionic liquid(IL)[Bmim]_(x)[C_(2)H_(5)NH_(3)]_(1-x)[Al_(2)Cl_(7)]as the catalyst was studied.Compared with the conventional catalyst[Bmim][Al_(2)Cl_(7)],the obtained PAO product incorporates more trimers and tetramers of 1-decene and contains few double-bond end groups,demonstrating a better catalytic system for PAO-10 production.The apparent polymerization kinetics of 1-decene in this catalytic system were studied based on the 1-decene concentration,catalyst concentration,and reaction temperature.An apparent kinetic equation for PAO formation was determined,providing a promising strategy for PAO production using 1-decene polymerization.
文摘Personality distinguishes individuals’ patterns of feeling, thinking,and behaving. Predicting personality from small video series is an excitingresearch area in computer vision. The majority of the existing research concludespreliminary results to get immense knowledge from visual and Audio(sound) modality. To overcome the deficiency, we proposed the Deep BimodalFusion (DBF) approach to predict five traits of personality-agreeableness,extraversion, openness, conscientiousness and neuroticism. In the proposedframework, regarding visual modality, the modified convolution neural networks(CNN), more specifically Descriptor Aggregator Model (DAN) areused to attain significant visual modality. The proposed model extracts audiorepresentations for greater efficiency to construct the long short-termmemory(LSTM) for the audio modality. Moreover, employing modality-based neuralnetworks allows this framework to independently determine the traits beforecombining them with weighted fusion to achieve a conclusive prediction of thegiven traits. The proposed approach attains the optimal mean accuracy score,which is 0.9183. It is achieved based on the average of five personality traitsand is thus better than previously proposed frameworks.
基金the financial support from the Natural Science Foundation for Distinguished Young Scholars of Hunan Province(2020JJ2047)the science and technology innovation Program of Hunan Province(2022RC3048)+2 种基金the Program of Huxiang Young Talents(2019RS2002)the Innovation-Driven Project of Central South University(2020CX027)the Fundamental Research Funds for the Central Universities of Central South University(2021zzts0125)。
文摘Apparent critical current density(j_(Ac)^(a))of garnet all-solid-state lithium metal symmetric cells(ASSLSCs)is a fundamental parameter for designing all-solid-state lithium metal batteries.Nevertheless,how much the possible maximum apparent current density that a given ASSLSC system can endure and how to reveal this potential still require study.Herein,a capacity perturbation strategy aiming to better measure the possible maximum j_(Ac)^(a)is proposed for the first time.With garnet-based plane-surface structure ASSLSCs as an exemplification,the j_(Ac)^(a)is quite small when the capacity is dramatically large.Under a perturbed capacity of 0.001 mA h cm^(-2),the j_(Ac)^(a)is determined to be as high as 2.35 mA cm^(-2)at room temperature.This investigation demonstrates that the capacity perturbation strategy is a feasible strategy for measuring the possible maximum j_(Ac)^(a)of Li/solid electrolyte interface,and hopefully provides good references to explore the critical current density of other types of electrochemical systems.
基金supported by the Strategic Priority Research Program (B) of CAS (No. XDB41000000)Pre-research Project on Civil Aerospace Technologies No. D020202 funded by the Chinese National Space Administration (CNSA) and Chinese NSF projects (No. 42130114)。
文摘The Rayleigh distillation isotope fractionation(RDIF) model is one of the most popular methods used in isotope geochemistry. Numerous isotope signals observed in geologic processes have been interpreted with this model. The RDIF model provides a simple mathematic solution for the reservoir-limited equilibrium isotope fractionation effect. Due to the reservoir effect, tremendously large isotope fractionations will always be produced if the reservoir is close to being depleted. However, in real situations, many prerequisites assumed in the RDIF model are often difficult to meet. For instance, it requires the relocated materials, which are removed step by step from one reservoir to another with different isotope compositions(i.e., with isotope fractionation), to be isotopically equilibrated with materials in the first reservoir simultaneously. This ‘‘quick equilibrium requirement’’ is indeed hard to meet if the first reservoir is sufficiently large or the removal step is fast. The whole first reservoir will often fail to re-attain equilibrium in time before the next removal starts.This problem led the RDIF model to fail to interpret isotope signals of many real situations. Here a diffusion-coupled and Rayleigh-like(i.e., reservoir-effect included) separation process is chosen to investigate this problem. We find that the final isotope fractionations are controlled by both the diffusion process and the reservoir effects via the disequilibrium separation process. Due to its complexity, we choose to use a numerical simulation method to solve this problem by developing specific computing codes for the working model.According to our simulation results, the classical RDIF model only governs isotope fractionations correctly at the final stages of separation when the reservoir scale(or thickness of the system) is reduced to the order of magnitude of the quotient of the diffusivity and the separation rate. The RDIF model fails in other situations and the isotope fractionations will be diffusion-limited when the reservoir is relatively large, or the separation rate is fast. We find that the effect of internal isotope distribution inhomogeneity caused by diffusion on the Rayleigh-like separation process is significant and cannot be ignored. This method can be applied to study numerous geologic and planetary processes involving diffusion-limited disequilibrium separation processes including partial melting,evaporation, mineral precipitation, core segregation, etc.Importantly, we find that far more information can be extracted through analyzing isotopic signals of such ‘‘disequilibrium’’processes than those of fully equilibrated ones, e.g., reservoir size and the separation rate. Such information may provide a key to correctly interpreting many isotope signals observed from geochemical and cosmochemical processes.
基金Supported by Chongqing Key Diseases Research and Application Demonstration Program,No.2019ZX003General Project of Chongqing Nature Science Foundation,No.cstc2021jcyj-msxmX0283.
文摘BACKGROUND Dopamine and cyclic adenosine monophosphate(cAMP)-regulated phosphop-rotein with an apparent Mr of 32000(DARPP-32)is a protein that is involved in regulating dopamine and cAMP signaling pathways in the brain.However,recent studies have shown that DARPP-32 is also expressed in other tissues,including colorectal cancer(CRC),where its function is not well understood.AIM To explore the effect of DARPP-32 on CRC progression.METHODS The expression levels of DARPP-32 were assessed in CRC tissues using both quantitative polymerase chain reaction and immunohistochemistry assays.The proliferative capacity of CRC cell lines was evaluated with Cell Counting Kit-8 and 5-ethynyl-2’-deoxyuridine assays,while apoptosis was measured by flow cytometry.The migratory and invasive potential of CRC cell lines were deter-mined using wound healing and transwell chamber assays.In vivo studies involved monitoring the growth rate of xenograft tumors.Finally,the underlying molecular mechanism of DARPP-32 was investigated through RNA-sequencing and western blot analyses.RESULTS DARPP-32 was frequently upregulated in CRC and associated with abnormal clinicopathological features in CRC.Overexpression of DARPP-32 was shown to promote cancer cell proliferation,migration,and invasion and reduce apoptosis.DARPP-32 knockdown resulted in the opposite functional effects.Mechanistically,DARPP-32 may regulate the phosphoinositide 3-kinase(PI3K)/AKT signaling pathway in order to carry out its biological function.CONCLUSION DARPP-32 promotes CRC progression via the PI3K/AKT signaling pathway.