The environmental conditions in China are still very serious. In the years to come, the mission for environmental treatment and protection, supervision,
Predictive Emission Monitoring Systems (PEMS) offer a cost-effective and environmentally friendly alternative to Continuous Emission Monitoring Systems (CEMS) for monitoring pollution from industrial sources. Multiple...Predictive Emission Monitoring Systems (PEMS) offer a cost-effective and environmentally friendly alternative to Continuous Emission Monitoring Systems (CEMS) for monitoring pollution from industrial sources. Multiple regression is one of the fundamental statistical techniques to describe the relationship between dependent and independent variables. This model can be effectively used to develop a PEMS, to estimate the amount of pollution emitted by industrial sources, where the fuel composition and other process-related parameters are available. It often makes them sufficient to predict the emission discharge with acceptable accuracy. In cases where PEMS are accepted as an alternative method to CEMS, which use gas analyzers, they can provide cost savings and substantial benefits for ongoing system support and maintenance. The described mathematical concept is based on the matrix algebra representation in multiple regression involving multiple precision arithmetic techniques. Challenging numerical examples for statistical big data analysis, are investigated. Numerical examples illustrate computational accuracy and efficiency of statistical analysis due to increasing the precision level. The programming language C++ is used for mathematical model implementation. The data for research and development, including the dependent fuel and independent NOx emissions data, were obtained from CEMS software installed on a petrochemical plant.展开更多
Flexible strain sensors are promising in sensing minuscule mechanical signals,and thereby widely used in various advanced fields.However,the effective integration of hypersensitivity and highly selective response into...Flexible strain sensors are promising in sensing minuscule mechanical signals,and thereby widely used in various advanced fields.However,the effective integration of hypersensitivity and highly selective response into one flexible strain sensor remains a huge challenge.Herein,inspired by the hysteresis strategy of the scorpion slit receptor,a bio-inspired flexible strain sensor(BFSS)with parallel through-slit arrays is designed and fabricated.Specifically,BFSS consists of conductive monolayer graphene and viscoelastic styrene–isoprene–styrene block copolymer.Under the synergistic effect of the bio-inspired slit structures and flexible viscoelastic materials,BFSS can achieve both hypersensitivity and highly selective frequency response.Remarkably,the BFSS exhibits a high gage factor of 657.36,and a precise identification of vibration frequencies at a resolution of 0.2 Hz through undergoing different morphological changes to high-frequency vibration and low-frequency vibration.Moreover,the BFSS possesses a wide frequency detection range(103 Hz)and stable durability(1000 cycles).It can sense and recognize vibration signals with different characteristics,including the frequency,amplitude,and waveform.This work,which turns the hysteresis effect into a"treasure,"can provide new design ideas for sensors for potential applications including human–computer interaction and health monitoring of mechanical equipment.展开更多
Optical fiber sensing technology has developed rapidly since the 1980s with the development of the optical fiber and fiber optical communication technology.It is a new type of sensing technology that uses light as a c...Optical fiber sensing technology has developed rapidly since the 1980s with the development of the optical fiber and fiber optical communication technology.It is a new type of sensing technology that uses light as a carrier and optical fiber as a medium to sense and transmit external signals(measurands).Distributed fiber optical sensors(DFOS)can continuously measure the external physical parameters distributed along the geometric path of the optical fiber.Meanwhile,the spatial distribution and change information of the measured physical parameters over time can be obtained.This technology has unmatched advantages over traditional point-wise and electrical measurement monitoring technologies.This paper summarizes the state-of-the-art research of the application of the distributed optical fiber sensing tech no logy in geo-engineering in the past 10 years,mainly including the advantages of DFOS,the challenges in geo-engineering monitoring,related fundamental theoretical issues,sensing performance of the optical sensing cables,distributed optical fiber monitoring system for geo-engineering,and applications of optical fiber sensing technology in geo-engineering.展开更多
Adenosine triphosphate(ATP),known as a common metabolic product in organism,is not only importance to provide energy in various cellular activities but also is widely explored in the bio-inspired synthetic supramolecu...Adenosine triphosphate(ATP),known as a common metabolic product in organism,is not only importance to provide energy in various cellular activities but also is widely explored in the bio-inspired synthetic supramolecular area which becomes a fascinating topic with the rapid development of biology,chemistry and materials science.In this review,the recent advances about ATP interacted with functional small organic compounds and metal coordinated complexes are summarized.The design principles,its function as an active supramolecular matrix,the associated non-covalent binding modes and assembly induced properties including the optical properties,morphologies are presented in details.Besides,their applications for metal ion detecting,enzyme activity monitoring and drug delivery are described due to their excellently dynamic assembly properties,adjustability,and response to stimuli.Finally,an overview of the existing challenges and future prospects of ATP-induced supramolecular systems are also discussed.展开更多
文摘The environmental conditions in China are still very serious. In the years to come, the mission for environmental treatment and protection, supervision,
文摘Predictive Emission Monitoring Systems (PEMS) offer a cost-effective and environmentally friendly alternative to Continuous Emission Monitoring Systems (CEMS) for monitoring pollution from industrial sources. Multiple regression is one of the fundamental statistical techniques to describe the relationship between dependent and independent variables. This model can be effectively used to develop a PEMS, to estimate the amount of pollution emitted by industrial sources, where the fuel composition and other process-related parameters are available. It often makes them sufficient to predict the emission discharge with acceptable accuracy. In cases where PEMS are accepted as an alternative method to CEMS, which use gas analyzers, they can provide cost savings and substantial benefits for ongoing system support and maintenance. The described mathematical concept is based on the matrix algebra representation in multiple regression involving multiple precision arithmetic techniques. Challenging numerical examples for statistical big data analysis, are investigated. Numerical examples illustrate computational accuracy and efficiency of statistical analysis due to increasing the precision level. The programming language C++ is used for mathematical model implementation. The data for research and development, including the dependent fuel and independent NOx emissions data, were obtained from CEMS software installed on a petrochemical plant.
基金This work was supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(Grant No.52021003)National Natural Science Foundation of China(Grant No.51835006)+6 种基金the National Natural Science Foundation of China(Grant Nos.52222509,52105301,U19A20103)Jilin University Science and Technology Innovative Research Team(Grant No.2020TD-03)Interdisciplinary Integration and Innovation Project of JLU(Grant No.JLUXKJC2021ZZ03)the Natural Science Foundation of Jilin Province(Grant No.20220101220JC)Education Department of Jilin Province(Grant No.JJKH20220979KJ)Graduate Innovation Fund of Jilin University(2023CX077)supported by“Fundamental Research Funds for the Central Universities.”。
文摘Flexible strain sensors are promising in sensing minuscule mechanical signals,and thereby widely used in various advanced fields.However,the effective integration of hypersensitivity and highly selective response into one flexible strain sensor remains a huge challenge.Herein,inspired by the hysteresis strategy of the scorpion slit receptor,a bio-inspired flexible strain sensor(BFSS)with parallel through-slit arrays is designed and fabricated.Specifically,BFSS consists of conductive monolayer graphene and viscoelastic styrene–isoprene–styrene block copolymer.Under the synergistic effect of the bio-inspired slit structures and flexible viscoelastic materials,BFSS can achieve both hypersensitivity and highly selective frequency response.Remarkably,the BFSS exhibits a high gage factor of 657.36,and a precise identification of vibration frequencies at a resolution of 0.2 Hz through undergoing different morphological changes to high-frequency vibration and low-frequency vibration.Moreover,the BFSS possesses a wide frequency detection range(103 Hz)and stable durability(1000 cycles).It can sense and recognize vibration signals with different characteristics,including the frequency,amplitude,and waveform.This work,which turns the hysteresis effect into a"treasure,"can provide new design ideas for sensors for potential applications including human–computer interaction and health monitoring of mechanical equipment.
基金supported by the National Natural Science Foundation of China(Grant Nos.42030701,41427801,and 42077233).
文摘Optical fiber sensing technology has developed rapidly since the 1980s with the development of the optical fiber and fiber optical communication technology.It is a new type of sensing technology that uses light as a carrier and optical fiber as a medium to sense and transmit external signals(measurands).Distributed fiber optical sensors(DFOS)can continuously measure the external physical parameters distributed along the geometric path of the optical fiber.Meanwhile,the spatial distribution and change information of the measured physical parameters over time can be obtained.This technology has unmatched advantages over traditional point-wise and electrical measurement monitoring technologies.This paper summarizes the state-of-the-art research of the application of the distributed optical fiber sensing tech no logy in geo-engineering in the past 10 years,mainly including the advantages of DFOS,the challenges in geo-engineering monitoring,related fundamental theoretical issues,sensing performance of the optical sensing cables,distributed optical fiber monitoring system for geo-engineering,and applications of optical fiber sensing technology in geo-engineering.
基金the Zhejiang Provincial Natural Science Foundation of China(Nos.LR22B010001,LQ23B010001)the National Natural Science Foundation of China(Nos.22201057,21871297)+1 种基金the Natural Science Foundation of Guangdong Province for Distinguished Young Scholars(No.2019B151502051)the Hangzhou Normal University(Nos.2021QDL001,2021QDL065)。
文摘Adenosine triphosphate(ATP),known as a common metabolic product in organism,is not only importance to provide energy in various cellular activities but also is widely explored in the bio-inspired synthetic supramolecular area which becomes a fascinating topic with the rapid development of biology,chemistry and materials science.In this review,the recent advances about ATP interacted with functional small organic compounds and metal coordinated complexes are summarized.The design principles,its function as an active supramolecular matrix,the associated non-covalent binding modes and assembly induced properties including the optical properties,morphologies are presented in details.Besides,their applications for metal ion detecting,enzyme activity monitoring and drug delivery are described due to their excellently dynamic assembly properties,adjustability,and response to stimuli.Finally,an overview of the existing challenges and future prospects of ATP-induced supramolecular systems are also discussed.