This paper views knowledge management (KM) investment from the angle of real options, and demonstrates the utility of the real options approach to KM investment analysis. First, KM project has characteristics of unc...This paper views knowledge management (KM) investment from the angle of real options, and demonstrates the utility of the real options approach to KM investment analysis. First, KM project has characteristics of uncertainty, irreversibility and choice of timing, which suggests that we can appraise KM investment by real options theory. Second, the paper analyses corresponding states of real options in KM and finance options. Then, this paper sheds light on the way to the application of binomial pricing method to KM investment model, which includes modeling and conducting KM options. Finally, different results are shown of using DCF method and binomial model of option evaluation via a case.展开更多
High-frequency (〉2 Hz) Rayleigh-wave data acquired with a multichannel recording system have been utilized to determine shear (S)-wave velocities in near-surface geophysics since the early 1980s. This overview ar...High-frequency (〉2 Hz) Rayleigh-wave data acquired with a multichannel recording system have been utilized to determine shear (S)-wave velocities in near-surface geophysics since the early 1980s. This overview article discusses the main research results of high-frequency surface-wave techniques achieved by research groups at the Kansas Geological Survey and China University of Geosciences in the last 15 years. The multichannel analysis of surface wave (MASW) method is a non-invasive acoustic approach to estimate near-surface S-wave velocity. The differences between MASW results and direct borehole measurements are approximately 15% or less and random. Studies show that simultaneous inversion with higher modes and the fundamental mode can increase model resolution and an investigation depth. The other important seismic property, quality factor (Q), can also be estimated with the MASW method by inverting attenuation coefficients of Rayleigh waves. An inverted model (S-wave velocity or Q) obtained using a damped least-squares method can be assessed by an optimal damping vector in a vicinity of the inverted model determined by an objective function, which is the trace of a weighted sum of model-resolution and model-covariance matrices. Current developments include modeUng high-frequency Rayleigh-waves in near-surface media, which builds a foundation for shallow seismic or Rayleigh-wave inversion in the time-offset domain; imaging dispersive energy with high resolution in the frequency-velocity domain and possibly with data in an arbitrary acquisition geometry, which opens a door for 3D surface-wave techniques; and successfully separating surface-wave modes, which provides a valuable tool to perform S-wave velocity profiling with high-horizontal resolution.展开更多
基金This paper is supported by National Natural Science Foundation of China (NSFC) and Ph.D. Research Fund.
文摘This paper views knowledge management (KM) investment from the angle of real options, and demonstrates the utility of the real options approach to KM investment analysis. First, KM project has characteristics of uncertainty, irreversibility and choice of timing, which suggests that we can appraise KM investment by real options theory. Second, the paper analyses corresponding states of real options in KM and finance options. Then, this paper sheds light on the way to the application of binomial pricing method to KM investment model, which includes modeling and conducting KM options. Finally, different results are shown of using DCF method and binomial model of option evaluation via a case.
基金supported by Kansas Geological Survey, The University of Kansas and China University of Geosciences
文摘High-frequency (〉2 Hz) Rayleigh-wave data acquired with a multichannel recording system have been utilized to determine shear (S)-wave velocities in near-surface geophysics since the early 1980s. This overview article discusses the main research results of high-frequency surface-wave techniques achieved by research groups at the Kansas Geological Survey and China University of Geosciences in the last 15 years. The multichannel analysis of surface wave (MASW) method is a non-invasive acoustic approach to estimate near-surface S-wave velocity. The differences between MASW results and direct borehole measurements are approximately 15% or less and random. Studies show that simultaneous inversion with higher modes and the fundamental mode can increase model resolution and an investigation depth. The other important seismic property, quality factor (Q), can also be estimated with the MASW method by inverting attenuation coefficients of Rayleigh waves. An inverted model (S-wave velocity or Q) obtained using a damped least-squares method can be assessed by an optimal damping vector in a vicinity of the inverted model determined by an objective function, which is the trace of a weighted sum of model-resolution and model-covariance matrices. Current developments include modeUng high-frequency Rayleigh-waves in near-surface media, which builds a foundation for shallow seismic or Rayleigh-wave inversion in the time-offset domain; imaging dispersive energy with high resolution in the frequency-velocity domain and possibly with data in an arbitrary acquisition geometry, which opens a door for 3D surface-wave techniques; and successfully separating surface-wave modes, which provides a valuable tool to perform S-wave velocity profiling with high-horizontal resolution.