The assembly process of aerospace products such as satellites and rockets has the characteristics of single-or small-batch production,a long development period,high reliability,and frequent disturbances.How to predict...The assembly process of aerospace products such as satellites and rockets has the characteristics of single-or small-batch production,a long development period,high reliability,and frequent disturbances.How to predict and avoid quality abnormalities,quickly locate their causes,and improve product assembly quality and efficiency are urgent engineering issues.As the core technology to realize the integration of virtual and physical space,digital twin(DT)technology can make full use of the low cost,high efficiency,and predictable advantages of digital space to provide a feasible solution to such problems.Hence,a quality management method for the assembly process of aerospace products based on DT is proposed.Given that traditional quality control methods for the assembly process of aerospace products are mostly post-inspection,the Grey-Markov model and T-K control chart are used with a small sample of assembly quality data to predict the value of quality data and the status of an assembly system.The Apriori algorithm is applied to mine the strong association rules related to quality data anomalies and uncontrolled assembly systems so as to solve the issue that the causes of abnormal quality are complicated and difficult to trace.The implementation of the proposed approach is described,taking the collected centroid data of an aerospace product’s cabin,one of the key quality data in the assembly process of aerospace products,as an example.A DT-based quality management system for the assembly process of aerospace products is developed,which can effectively improve the efficiency of quality management for the assembly process of aerospace products and reduce quality abnormalities.展开更多
Objective:To analyze misdiagnosis features in clinical cases of“Classified Medical Cases of Famous Physicians”and“Supplement to Classified Case Records of Celebrated Physicians.”Materials and Methods:Two hundred a...Objective:To analyze misdiagnosis features in clinical cases of“Classified Medical Cases of Famous Physicians”and“Supplement to Classified Case Records of Celebrated Physicians.”Materials and Methods:Two hundred and five ancient misdiagnosed cases were analyzed in aspects of locations(exterior-interior type,qi-blood type and Zang‑Fu organs type)and patterns(heat-cold type and deficiency-excess type)by Apriori Algorithm Method.Results:The main types of misdiagnosis in those medical casesare as follows::Zang‑Fu location misjudgment,misjudging the interior as the exterior,misjudging deficiency pattern as excess pattern,and misjudging cold pattern as heat pattern.Among them,the most outstanding type is the misjudgment of deficiency–cold pattern as excess–heat pattern.Conclusions:(1)Accurate judgment of location and differentiation of deficiency and excess patterns are the key points in diagnosing the diseases correctly.The confusion of true deficiency–cold and pseudo‑excess–heat pattern should be taken seriously.(2)Data mining on ancient clinical cases offers a new methodology for assisting clinical diagnosis of traditional Chinese medicine.展开更多
Investigations towards studying terrorist activities have recently attracted a great amount of research interest. In this paper, we investigate the use of the Apriori algorithm on the Global Terrorism Database (GTD) f...Investigations towards studying terrorist activities have recently attracted a great amount of research interest. In this paper, we investigate the use of the Apriori algorithm on the Global Terrorism Database (GTD) for forensic investigation purposes. Recently, the Apriori algorithm, which could be considered a forensic tool</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> has been used to study terrorist activities and patterns across the world. As such, our motivation is to utilise the Apriori algorithm approach on the GTD to study terrorist activities and the areas/states in Nigeria with high frequencies of terrorist activities. We observe that the most preferred method of terrorist attacks in Nigeria is through armed assault. Again, our experiment shows that attacks in Nigeria are mostly successful. Also, we observe from our investigations that most terrorists in Nigeria are not suicidal. The main application of this work can be used by forensic experts to assist law enforcement agencies in decision making when handling terrorist attacks in Nigeria</span><span style="font-family:Verdana;">. </p>展开更多
The traditional Apriori applied in books management system causes slow system operation due to frequent scanning of database and excessive quantity of candidate item-sets, so an information recommendation book managem...The traditional Apriori applied in books management system causes slow system operation due to frequent scanning of database and excessive quantity of candidate item-sets, so an information recommendation book management system based on improved Apriori data mining algorithm is designed, in which the C/S (client/server) architecture and B/S (browser/server) architecture are integrated, so as to open the book information to library staff and borrowers. The related information data of the borrowers and books can be extracted from books lending database by the data preprocessing sub-module in the system function module. After the data is cleaned, converted and integrated, the association rule mining sub-module is used to mine the strong association rules with support degree greater than minimum support degree threshold and confidence coefficient greater than minimum confidence coefficient threshold according to the processed data and by means of the improved Apriori data mining algorithm to generate association rule database. The association matching is performed by the personalized recommendation sub-module according to the borrower and his selected books in the association rule database. The book information associated with the books read by borrower is recommended to him to realize personalized recommendation of the book information. The experimental results show that the system can effectively recommend book related information, and its CPU occupation rate is only 6.47% under the condition that 50 clients are running it at the same time. Anyway, it has good performance.展开更多
In this paper,We study the Apriori and FP-growth algorithm in mining association rules and give a method for computing all the frequent item-sets in a database.Its basic idea is giving a concept based on the boolean v...In this paper,We study the Apriori and FP-growth algorithm in mining association rules and give a method for computing all the frequent item-sets in a database.Its basic idea is giving a concept based on the boolean vector business product,which be computed between all the businesses,then we can get all the two frequent item-sets(minsup=2).We basis their inclusive relation to construct a set-tree of item-sets in database transaction,and then traverse path in it and get all the frequent item-sets.Therefore,we can get minimal frequent item sets between transactions and items in the database without scanning the database and iteratively computing in Apriori algorithm.展开更多
By analyzing the correlation between courses in students’grades,we can provide a decision-making basis for the revision of courses and syllabi,rationally optimize courses,and further improve teaching effects.With the...By analyzing the correlation between courses in students’grades,we can provide a decision-making basis for the revision of courses and syllabi,rationally optimize courses,and further improve teaching effects.With the help of IBM SPSS Modeler data mining software,this paper uses Apriori algorithm for association rule mining to conduct an in-depth analysis of the grades of nursing students in Shandong College of Traditional Chinese Medicine,and to explore the correlation between professional basic courses and professional core courses.Lastly,according to the detailed analysis of the mining results,valuable curriculum information will be found from the actual teaching data.展开更多
It is a key challenge to exploit the label coupling relationship in multi-label classification(MLC)problems.Most previous work focused on label pairwise relations,in which generally only global statistical informati...It is a key challenge to exploit the label coupling relationship in multi-label classification(MLC)problems.Most previous work focused on label pairwise relations,in which generally only global statistical information is used to analyze the coupled label relationship.In this work,firstly Bayesian and hypothesis testing methods are applied to predict the label set size of testing samples within their k nearest neighbor samples,which combines global and local statistical information,and then apriori algorithm is used to mine the label coupling relationship among multiple labels rather than pairwise labels,which can exploit the label coupling relations more accurately and comprehensively.The experimental results on text,biology and audio datasets shown that,compared with the state-of-the-art algorithm,the proposed algorithm can obtain better performance on 5 common criteria.展开更多
A method for mining frequent itemsets by evaluating their probability of supports based on association analysis is presented. This paper obtains the probability of every 1\|itemset by scanning the database, then evalu...A method for mining frequent itemsets by evaluating their probability of supports based on association analysis is presented. This paper obtains the probability of every 1\|itemset by scanning the database, then evaluates the probability of every 2\|itemset, every 3\|itemset, every k \|itemset from the frequent 1\|itemsets and gains all the candidate frequent itemsets. This paper also scans the database for verifying the support of the candidate frequent itemsets. Last, the frequent itemsets are mined. The method reduces a lot of time of scanning database and shortens the computation time of the algorithm.展开更多
基金National Key Research and Development Program of China(Grant No.2020YFB1710300)National Natural Science Foundation of China(Grant No.52005042)+2 种基金National Defense Fundamental Research Foundation of China(Grant No.JCKY2020203B039)Equipment Pre-research Foundation of China(Grant No.80923010101)Beijing Institute of Technology Research Fund Program for Young Scholars.
文摘The assembly process of aerospace products such as satellites and rockets has the characteristics of single-or small-batch production,a long development period,high reliability,and frequent disturbances.How to predict and avoid quality abnormalities,quickly locate their causes,and improve product assembly quality and efficiency are urgent engineering issues.As the core technology to realize the integration of virtual and physical space,digital twin(DT)technology can make full use of the low cost,high efficiency,and predictable advantages of digital space to provide a feasible solution to such problems.Hence,a quality management method for the assembly process of aerospace products based on DT is proposed.Given that traditional quality control methods for the assembly process of aerospace products are mostly post-inspection,the Grey-Markov model and T-K control chart are used with a small sample of assembly quality data to predict the value of quality data and the status of an assembly system.The Apriori algorithm is applied to mine the strong association rules related to quality data anomalies and uncontrolled assembly systems so as to solve the issue that the causes of abnormal quality are complicated and difficult to trace.The implementation of the proposed approach is described,taking the collected centroid data of an aerospace product’s cabin,one of the key quality data in the assembly process of aerospace products,as an example.A DT-based quality management system for the assembly process of aerospace products is developed,which can effectively improve the efficiency of quality management for the assembly process of aerospace products and reduce quality abnormalities.
基金Budget Foundation of Shanghai University of TCM(A1-GY010130)Philosophy and Social Science Foundation of Shanghai(2019BTQ005)。
文摘Objective:To analyze misdiagnosis features in clinical cases of“Classified Medical Cases of Famous Physicians”and“Supplement to Classified Case Records of Celebrated Physicians.”Materials and Methods:Two hundred and five ancient misdiagnosed cases were analyzed in aspects of locations(exterior-interior type,qi-blood type and Zang‑Fu organs type)and patterns(heat-cold type and deficiency-excess type)by Apriori Algorithm Method.Results:The main types of misdiagnosis in those medical casesare as follows::Zang‑Fu location misjudgment,misjudging the interior as the exterior,misjudging deficiency pattern as excess pattern,and misjudging cold pattern as heat pattern.Among them,the most outstanding type is the misjudgment of deficiency–cold pattern as excess–heat pattern.Conclusions:(1)Accurate judgment of location and differentiation of deficiency and excess patterns are the key points in diagnosing the diseases correctly.The confusion of true deficiency–cold and pseudo‑excess–heat pattern should be taken seriously.(2)Data mining on ancient clinical cases offers a new methodology for assisting clinical diagnosis of traditional Chinese medicine.
文摘Investigations towards studying terrorist activities have recently attracted a great amount of research interest. In this paper, we investigate the use of the Apriori algorithm on the Global Terrorism Database (GTD) for forensic investigation purposes. Recently, the Apriori algorithm, which could be considered a forensic tool</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> has been used to study terrorist activities and patterns across the world. As such, our motivation is to utilise the Apriori algorithm approach on the GTD to study terrorist activities and the areas/states in Nigeria with high frequencies of terrorist activities. We observe that the most preferred method of terrorist attacks in Nigeria is through armed assault. Again, our experiment shows that attacks in Nigeria are mostly successful. Also, we observe from our investigations that most terrorists in Nigeria are not suicidal. The main application of this work can be used by forensic experts to assist law enforcement agencies in decision making when handling terrorist attacks in Nigeria</span><span style="font-family:Verdana;">. </p>
文摘The traditional Apriori applied in books management system causes slow system operation due to frequent scanning of database and excessive quantity of candidate item-sets, so an information recommendation book management system based on improved Apriori data mining algorithm is designed, in which the C/S (client/server) architecture and B/S (browser/server) architecture are integrated, so as to open the book information to library staff and borrowers. The related information data of the borrowers and books can be extracted from books lending database by the data preprocessing sub-module in the system function module. After the data is cleaned, converted and integrated, the association rule mining sub-module is used to mine the strong association rules with support degree greater than minimum support degree threshold and confidence coefficient greater than minimum confidence coefficient threshold according to the processed data and by means of the improved Apriori data mining algorithm to generate association rule database. The association matching is performed by the personalized recommendation sub-module according to the borrower and his selected books in the association rule database. The book information associated with the books read by borrower is recommended to him to realize personalized recommendation of the book information. The experimental results show that the system can effectively recommend book related information, and its CPU occupation rate is only 6.47% under the condition that 50 clients are running it at the same time. Anyway, it has good performance.
文摘In this paper,We study the Apriori and FP-growth algorithm in mining association rules and give a method for computing all the frequent item-sets in a database.Its basic idea is giving a concept based on the boolean vector business product,which be computed between all the businesses,then we can get all the two frequent item-sets(minsup=2).We basis their inclusive relation to construct a set-tree of item-sets in database transaction,and then traverse path in it and get all the frequent item-sets.Therefore,we can get minimal frequent item sets between transactions and items in the database without scanning the database and iteratively computing in Apriori algorithm.
文摘By analyzing the correlation between courses in students’grades,we can provide a decision-making basis for the revision of courses and syllabi,rationally optimize courses,and further improve teaching effects.With the help of IBM SPSS Modeler data mining software,this paper uses Apriori algorithm for association rule mining to conduct an in-depth analysis of the grades of nursing students in Shandong College of Traditional Chinese Medicine,and to explore the correlation between professional basic courses and professional core courses.Lastly,according to the detailed analysis of the mining results,valuable curriculum information will be found from the actual teaching data.
基金Supported by Australian Research Council Discovery(DP130102691)the National Science Foundation of China(61302157)+1 种基金China National 863 Project(2012AA12A308)China Pre-research Project of Nuclear Industry(FZ1402-08)
文摘It is a key challenge to exploit the label coupling relationship in multi-label classification(MLC)problems.Most previous work focused on label pairwise relations,in which generally only global statistical information is used to analyze the coupled label relationship.In this work,firstly Bayesian and hypothesis testing methods are applied to predict the label set size of testing samples within their k nearest neighbor samples,which combines global and local statistical information,and then apriori algorithm is used to mine the label coupling relationship among multiple labels rather than pairwise labels,which can exploit the label coupling relations more accurately and comprehensively.The experimental results on text,biology and audio datasets shown that,compared with the state-of-the-art algorithm,the proposed algorithm can obtain better performance on 5 common criteria.
文摘A method for mining frequent itemsets by evaluating their probability of supports based on association analysis is presented. This paper obtains the probability of every 1\|itemset by scanning the database, then evaluates the probability of every 2\|itemset, every 3\|itemset, every k \|itemset from the frequent 1\|itemsets and gains all the candidate frequent itemsets. This paper also scans the database for verifying the support of the candidate frequent itemsets. Last, the frequent itemsets are mined. The method reduces a lot of time of scanning database and shortens the computation time of the algorithm.