Thermodynamics for chemical vapor synthesis (CVS) of Nb nanopowder in NbCl5-H2-Ar system was investigated by using FactSage software. The validation experiments were conducted to confirm the thermodynamics points. T...Thermodynamics for chemical vapor synthesis (CVS) of Nb nanopowder in NbCl5-H2-Ar system was investigated by using FactSage software. The validation experiments were conducted to confirm the thermodynamics points. The results indicate that under the atmospheric pressure, the reduction approach from NbCl5(g) to Nb(s) is a stage-wise process with the formation of complex sub-chlorides, and is controllable at low hydrogen ratio (mole ratio of n(NbCl5):n(H2)<1:180) and low temperature (<1050 °C). Furthermore, a reasonable amount of inert loading gas is favorable to increase the reduction ratio of NbCl5 and the powder yield. The as-synthesized Nb nanopowder with the homogeneous size of 30-50 nm and the powder yield of 85% (mass fraction) is obtained by the CVS process under n(NbCl5):n(H2):n(Ar)=1:120:1 and 950 °C with the NbCl5 reduction rate of 96.1%.展开更多
Al2O3 and Y2O3 have been respectively chosen for additional dopants to investigate the influence on the ferromagnetism of Co doped CeO2 bulk. Results indicate that ferromagnetism (FM) of Co doped CeO2 decrease with ...Al2O3 and Y2O3 have been respectively chosen for additional dopants to investigate the influence on the ferromagnetism of Co doped CeO2 bulk. Results indicate that ferromagnetism (FM) of Co doped CeO2 decrease with additional Al^3+. Accordingly, certain amount of Y^3+ can readily be incorporated into the lattice of CeO2 with the decrease of its grain size as well as some pores formation, leading to an enhancement of FM with a positive correlation between magnetization and Y^3+ doping content. This experimental result is helpful both in understanding FM origination in diluted magnetic oxide (DMO) as well as to improve the moments of DMO applicable in spintronic devices.展开更多
基金Project(51102015)supported by the National Natural Science Foundation of China
文摘Thermodynamics for chemical vapor synthesis (CVS) of Nb nanopowder in NbCl5-H2-Ar system was investigated by using FactSage software. The validation experiments were conducted to confirm the thermodynamics points. The results indicate that under the atmospheric pressure, the reduction approach from NbCl5(g) to Nb(s) is a stage-wise process with the formation of complex sub-chlorides, and is controllable at low hydrogen ratio (mole ratio of n(NbCl5):n(H2)<1:180) and low temperature (<1050 °C). Furthermore, a reasonable amount of inert loading gas is favorable to increase the reduction ratio of NbCl5 and the powder yield. The as-synthesized Nb nanopowder with the homogeneous size of 30-50 nm and the powder yield of 85% (mass fraction) is obtained by the CVS process under n(NbCl5):n(H2):n(Ar)=1:120:1 and 950 °C with the NbCl5 reduction rate of 96.1%.
基金Supported by National Natural Science Foundation of China(Grant No.51207027)Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry of ChinaUndergraduate Training Programs for Innovation and Entrepreneurship
基金This work is supported by the National Basic Research Program (973) under Grant No. 2007CB31407 the International S&T Cooperation Program of China under Grant No. 2006DFA53410.
文摘Al2O3 and Y2O3 have been respectively chosen for additional dopants to investigate the influence on the ferromagnetism of Co doped CeO2 bulk. Results indicate that ferromagnetism (FM) of Co doped CeO2 decrease with additional Al^3+. Accordingly, certain amount of Y^3+ can readily be incorporated into the lattice of CeO2 with the decrease of its grain size as well as some pores formation, leading to an enhancement of FM with a positive correlation between magnetization and Y^3+ doping content. This experimental result is helpful both in understanding FM origination in diluted magnetic oxide (DMO) as well as to improve the moments of DMO applicable in spintronic devices.