This study sheds light on a poorly understood area in insect-plant-microbe interactions,focusing on aphid probing and feeding behavior on plants with varying levels of arbuscular mycorrhizal(AM)fungus root colonizatio...This study sheds light on a poorly understood area in insect-plant-microbe interactions,focusing on aphid probing and feeding behavior on plants with varying levels of arbuscular mycorrhizal(AM)fungus root colonization.It investigates a commonly occurring interaction of three species:pea aphid Acyrthosiphon pisum,barrel medic Medicago truncatula,and the AM fungus Rhizophagus irregularis,examining whether aphid-feeding behavior changes when insects feed on plants at different levels of AM fungus colonization(42% and 84% root length colonized).Aphid probing and feeding behavior was monitored throughout 8 h of recording using the electrical penetration graph(EPG)technique,also,foliar nutrient content and plant growth were measured.Summarizing,aphids took longer to reach their 1st sustained phloem ingestion on the 84% AM plants than on the 42% AM plants or on controls.Less aphids showed phloem ingestion on the 84% AM plants relative to the 42% AM plants.Shoots of the 84% AM plants had higher percent carbon(43.7%)relative to controls(40.5%),and the 84% AM plants had reduced percent nitrogen(5.3%)relative to the 42% AM plants(6%).In conclusion,EPG and foliar nutrient data support the hypothesis that modifications in plant anatomy(e.g.,thicker leaves),and poor food quality(reduced nitrogen)in the 84% AM plants contribute to reduced aphid success in locating phloem and ultimately to differences in phloem sap ingestion.This work suggests that M.truncatula plants benefit from AM symbiosis not only because of increased nutrient uptake but also because of reduced susceptibility to aphids.展开更多
Arbuscular mycorrhizal(AM)fungi reside in the rhizosphere and form mutualistic associations with plant roots.They promote photosynthesis,improve stress resistance,and induce secondary metabolite biosynthesis in host m...Arbuscular mycorrhizal(AM)fungi reside in the rhizosphere and form mutualistic associations with plant roots.They promote photosynthesis,improve stress resistance,and induce secondary metabolite biosynthesis in host medicinal plants.The AM fungi that are symbiotic with medicinal plants comprise a wide array of species and have abundant germplasm resources.Though research on the AM fungi in medicinal plants began relatively recently,it has nonetheless become an investigative hot spot.Several scholars have explored the diversity and the growth-promoting effects of mycorrhizal fungi in hundreds of medicinal plants.Current research on symbiotic AM fungi in medicinal plants has focused mainly on the effects of inoculating host plants with symbiotic mycorrhizal fungi.However,research on the symbiotic AM fungi in medicinal plants continues to expand,and further study is required to determine the mechanisms by which AM fungi interact with host plants.This paper introduces the diversity of symbiotic AM fungi of medicinal plants and the effects of AM fungi on rhizosphere soil of medicinal plants,including soil structure,microbiota,enzyme activities,etc.This review focuses on the effects of AM fungi on medicinal plants,including antioxidant enzyme systems,drought resistance,nutrient absorption profiles of macroand micronutrients,accumulation of secondary metabolites such as terpenes,phenolic compounds,and nitrogenous compounds,and prevention of diseases.This review is expected to provide a reference for the application of AM fungi in medicinal plant cultivation,biological control,resource conservation,and the sustainable development of the traditional Chinese medicine industry.展开更多
The activities of enzymes responsible for lignification in pepper, pre-inoculation with arbuscular mycorrhizal (AM) fungus of Glomus intraradices and/or infection with pathogenic strain of Phytophthora capsici, and th...The activities of enzymes responsible for lignification in pepper, pre-inoculation with arbuscular mycorrhizal (AM) fungus of Glomus intraradices and/or infection with pathogenic strain of Phytophthora capsici, and the biological control effect of G. intraradices on Phytophthora blight in pepper were investigated. The experiment was carried out with four treatments: (1) plants pre-inoculated with G. intraradices (Gi), (2) plants pre-inoculated with G. intraradices and then infected with P. capsici (Gi+Pc), (3) plants infected with P. capsici (Pc), and (4) plants without any of the two microorganisms (C). Mycorrhizal coloni-zation rate was reduced by about 10% in pathogen challenged plants. Root mortality caused by infection of P. capsici was com-pletely eliminated by pre-inoculation with antagonistic G. intraradices. On the ninth day after pathogen infection, Peroxidase (POD) activity increased by 116.9% in Pc-treated roots but by only 21.2% in Gi+Pc-treated roots, compared with the control, respectively. Polyphenol oxidase (PPO) and Phenylalanine ammonia-lyase (PAL) activities gradually increased during the first 3 d and dramatically decreased in Pc-treated roots but slightly decreased in Gi+Pc-treated roots, respectively. On the ninth day after pathogen infection, PPO and PAL decreased by 62.8% and 73.9% in Pc-treated roots but by only 19.8% and 19.5% in Gi+Pc-treated roots, compared with the control, respectively. Three major POD isozymes (45 000, 53 000 and 114 000) were present in Pc-treated roots, while two major bands (53 000 and 114 000) and one minor band (45 000) were present in spectra of Gi+Pc-treated roots, the 45 000 POD isozyme was significantly suppressed by G. intraradices, suggesting that the 45 000 POD isozyme was induced by the pathogen infection but not induced by the antagonistic G. intraradices. A 60 000 PPO isozyme was induced in Pc-treated roots but not induced in Gi+Pc-treated roots. All these results showed the inoculation of antagonistic G. intraradices alleviates root mortality, activates changes of lignification-related enzymes and induces some of the isozymes in pepper plants infected by P. capsici. The results suggested that G. intraradices is a potentially effective protection agent against P. capsici.展开更多
基金This research was funded by the Summer Support Initiative from the University of Northern Colorado (awarded to S.K.G.)
文摘This study sheds light on a poorly understood area in insect-plant-microbe interactions,focusing on aphid probing and feeding behavior on plants with varying levels of arbuscular mycorrhizal(AM)fungus root colonization.It investigates a commonly occurring interaction of three species:pea aphid Acyrthosiphon pisum,barrel medic Medicago truncatula,and the AM fungus Rhizophagus irregularis,examining whether aphid-feeding behavior changes when insects feed on plants at different levels of AM fungus colonization(42% and 84% root length colonized).Aphid probing and feeding behavior was monitored throughout 8 h of recording using the electrical penetration graph(EPG)technique,also,foliar nutrient content and plant growth were measured.Summarizing,aphids took longer to reach their 1st sustained phloem ingestion on the 84% AM plants than on the 42% AM plants or on controls.Less aphids showed phloem ingestion on the 84% AM plants relative to the 42% AM plants.Shoots of the 84% AM plants had higher percent carbon(43.7%)relative to controls(40.5%),and the 84% AM plants had reduced percent nitrogen(5.3%)relative to the 42% AM plants(6%).In conclusion,EPG and foliar nutrient data support the hypothesis that modifications in plant anatomy(e.g.,thicker leaves),and poor food quality(reduced nitrogen)in the 84% AM plants contribute to reduced aphid success in locating phloem and ultimately to differences in phloem sap ingestion.This work suggests that M.truncatula plants benefit from AM symbiosis not only because of increased nutrient uptake but also because of reduced susceptibility to aphids.
基金This work was supported by the National Natural Science Foundation of China(31960272)Basic research fund of Guangxi Academy of Sciences(CQZE-1909)the Guangxi Scientific and Technological Project(Guike AB18126065).
文摘Arbuscular mycorrhizal(AM)fungi reside in the rhizosphere and form mutualistic associations with plant roots.They promote photosynthesis,improve stress resistance,and induce secondary metabolite biosynthesis in host medicinal plants.The AM fungi that are symbiotic with medicinal plants comprise a wide array of species and have abundant germplasm resources.Though research on the AM fungi in medicinal plants began relatively recently,it has nonetheless become an investigative hot spot.Several scholars have explored the diversity and the growth-promoting effects of mycorrhizal fungi in hundreds of medicinal plants.Current research on symbiotic AM fungi in medicinal plants has focused mainly on the effects of inoculating host plants with symbiotic mycorrhizal fungi.However,research on the symbiotic AM fungi in medicinal plants continues to expand,and further study is required to determine the mechanisms by which AM fungi interact with host plants.This paper introduces the diversity of symbiotic AM fungi of medicinal plants and the effects of AM fungi on rhizosphere soil of medicinal plants,including soil structure,microbiota,enzyme activities,etc.This review focuses on the effects of AM fungi on medicinal plants,including antioxidant enzyme systems,drought resistance,nutrient absorption profiles of macroand micronutrients,accumulation of secondary metabolites such as terpenes,phenolic compounds,and nitrogenous compounds,and prevention of diseases.This review is expected to provide a reference for the application of AM fungi in medicinal plant cultivation,biological control,resource conservation,and the sustainable development of the traditional Chinese medicine industry.
基金Project supported by Korea Science and Engineering Foundation(KOSEF) through the Agricultural Plants Stress Research Center(APSRC) at Chonnam National University, Korea
文摘The activities of enzymes responsible for lignification in pepper, pre-inoculation with arbuscular mycorrhizal (AM) fungus of Glomus intraradices and/or infection with pathogenic strain of Phytophthora capsici, and the biological control effect of G. intraradices on Phytophthora blight in pepper were investigated. The experiment was carried out with four treatments: (1) plants pre-inoculated with G. intraradices (Gi), (2) plants pre-inoculated with G. intraradices and then infected with P. capsici (Gi+Pc), (3) plants infected with P. capsici (Pc), and (4) plants without any of the two microorganisms (C). Mycorrhizal coloni-zation rate was reduced by about 10% in pathogen challenged plants. Root mortality caused by infection of P. capsici was com-pletely eliminated by pre-inoculation with antagonistic G. intraradices. On the ninth day after pathogen infection, Peroxidase (POD) activity increased by 116.9% in Pc-treated roots but by only 21.2% in Gi+Pc-treated roots, compared with the control, respectively. Polyphenol oxidase (PPO) and Phenylalanine ammonia-lyase (PAL) activities gradually increased during the first 3 d and dramatically decreased in Pc-treated roots but slightly decreased in Gi+Pc-treated roots, respectively. On the ninth day after pathogen infection, PPO and PAL decreased by 62.8% and 73.9% in Pc-treated roots but by only 19.8% and 19.5% in Gi+Pc-treated roots, compared with the control, respectively. Three major POD isozymes (45 000, 53 000 and 114 000) were present in Pc-treated roots, while two major bands (53 000 and 114 000) and one minor band (45 000) were present in spectra of Gi+Pc-treated roots, the 45 000 POD isozyme was significantly suppressed by G. intraradices, suggesting that the 45 000 POD isozyme was induced by the pathogen infection but not induced by the antagonistic G. intraradices. A 60 000 PPO isozyme was induced in Pc-treated roots but not induced in Gi+Pc-treated roots. All these results showed the inoculation of antagonistic G. intraradices alleviates root mortality, activates changes of lignification-related enzymes and induces some of the isozymes in pepper plants infected by P. capsici. The results suggested that G. intraradices is a potentially effective protection agent against P. capsici.