The inner hole parts played an oriented or supporting role in engineering machinery and equipment,which are prone to appear surface damages such as wear,strain and corrosion. The precise pulse plasma arc powder weldin...The inner hole parts played an oriented or supporting role in engineering machinery and equipment,which are prone to appear surface damages such as wear,strain and corrosion. The precise pulse plasma arc powder welding method is used for surface damage repairing of inner hole parts in this paper. The working principle and process of the technology are illustrated,and the microstructure and property of repairing layer by precise pulse plasma powder welding and CO2 gas shielded welding are tested and observed by microscope,micro hardness tester and X-ray residual stress tester etc. Results showed that the substrate deformation of thin-walled inner hole parts samples by precise pulse plasma powder welding is relatively small. The repair layer and substrate is metallurgical bonding,the transition zones( including fusion zone and heat affected zone) are relatively narrow and the welding quality is good. It showed that the thin-walled inner hole parts can be repaired by this technology and equipment.展开更多
According to the strategy of controlled pulse key-holing,a new sensing and control system was developed for monitoring and controlling the keyhole condition during plasma arc welding(PAW). Through sensing and processi...According to the strategy of controlled pulse key-holing,a new sensing and control system was developed for monitoring and controlling the keyhole condition during plasma arc welding(PAW). Through sensing and processing the efflux plasma voltage signals,the quantitative relationship among the welding current,efflux plasma voltage and backside weld width of the weld was established. PAW experiments show that the efflux plasma voltage can reflect the state of keyhole and backside weld width accurately. The closed-loop control tests validate the stability and reliability of the developed keyhole PAW system.展开更多
To overcome the shortcomings of conventional plasma arc welding ( PAW), the ' controlled pulse key-holing' strategy is proposed and the keyhole PAW experiment system is developed. 'The efflux plasma voltage signa...To overcome the shortcomings of conventional plasma arc welding ( PAW), the ' controlled pulse key-holing' strategy is proposed and the keyhole PAW experiment system is developed. 'The efflux plasma voltage signal is detected in realtime to characterize the keyhole size and dimension. The welding current waveform for controlled pulse key-holing strategy is implemented, and two slow-decreasing slopes are added at the dropping point from peak current to base current to further reduce both heat input and arc force so that the controllability of keyhole dynamics is improved. Two kinds of PAW tests are conducted, anti the different parameters of the controlled pulse current and the relevant efflux plasma voltage are measured in real-time to investigate ihe effects of welding current waveform parameters on the key-holing condition.展开更多
文摘The inner hole parts played an oriented or supporting role in engineering machinery and equipment,which are prone to appear surface damages such as wear,strain and corrosion. The precise pulse plasma arc powder welding method is used for surface damage repairing of inner hole parts in this paper. The working principle and process of the technology are illustrated,and the microstructure and property of repairing layer by precise pulse plasma powder welding and CO2 gas shielded welding are tested and observed by microscope,micro hardness tester and X-ray residual stress tester etc. Results showed that the substrate deformation of thin-walled inner hole parts samples by precise pulse plasma powder welding is relatively small. The repair layer and substrate is metallurgical bonding,the transition zones( including fusion zone and heat affected zone) are relatively narrow and the welding quality is good. It showed that the thin-walled inner hole parts can be repaired by this technology and equipment.
基金Project(50540420570) supported by the National Natural Science Foundation of ChinaProject(07-12-002) supported by the Innovative Conception Fund of the Welding Institution of Chinese Mechanical Engineering Society
文摘According to the strategy of controlled pulse key-holing,a new sensing and control system was developed for monitoring and controlling the keyhole condition during plasma arc welding(PAW). Through sensing and processing the efflux plasma voltage signals,the quantitative relationship among the welding current,efflux plasma voltage and backside weld width of the weld was established. PAW experiments show that the efflux plasma voltage can reflect the state of keyhole and backside weld width accurately. The closed-loop control tests validate the stability and reliability of the developed keyhole PAW system.
基金Acknowledgement The authors are grateful to the financial support for this research from the National Natural Science Foundation of China (Key Program Grant No. 50936003).
文摘To overcome the shortcomings of conventional plasma arc welding ( PAW), the ' controlled pulse key-holing' strategy is proposed and the keyhole PAW experiment system is developed. 'The efflux plasma voltage signal is detected in realtime to characterize the keyhole size and dimension. The welding current waveform for controlled pulse key-holing strategy is implemented, and two slow-decreasing slopes are added at the dropping point from peak current to base current to further reduce both heat input and arc force so that the controllability of keyhole dynamics is improved. Two kinds of PAW tests are conducted, anti the different parameters of the controlled pulse current and the relevant efflux plasma voltage are measured in real-time to investigate ihe effects of welding current waveform parameters on the key-holing condition.