Gross primary productivity(GPP)of vegetation is an important constituent of the terrestrial carbon sinks and is significantly influenced by drought.Understanding the impact of droughts on different types of vegetation...Gross primary productivity(GPP)of vegetation is an important constituent of the terrestrial carbon sinks and is significantly influenced by drought.Understanding the impact of droughts on different types of vegetation GPP provides insight into the spatiotemporal variation of terrestrial carbon sinks,aiding efforts to mitigate the detrimental effects of climate change.In this study,we utilized the precipitation and temperature data from the Climatic Research Unit,the standardized precipitation evapotranspiration index(SPEI),the standardized precipitation index(SPI),and the simulated vegetation GPP using the eddy covariance-light use efficiency(EC-LUE)model to analyze the spatiotemporal change of GPP and its response to different drought indices in the Mongolian Plateau during 1982-2018.The main findings indicated that vegetation GPP decreased in 50.53% of the plateau,mainly in its northern and northeastern parts,while it increased in the remaining 49.47%area.Specifically,meadow steppe(78.92%)and deciduous forest(79.46%)witnessed a significant decrease in vegetation GPP,while alpine steppe(75.08%),cropland(76.27%),and sandy vegetation(87.88%)recovered well.Warming aridification areas accounted for 71.39% of the affected areas,while 28.53% of the areas underwent severe aridification,mainly located in the south and central regions.Notably,the warming aridification areas of desert steppe(92.68%)and sandy vegetation(90.24%)were significant.Climate warming was found to amplify the sensitivity of coniferous forest,deciduous forest,meadow steppe,and alpine steppe GPP to drought.Additionally,the drought sensitivity of vegetation GPP in the Mongolian Plateau gradually decreased as altitude increased.The cumulative effect of drought on vegetation GPP persisted for 3.00-8.00 months.The findings of this study will improve the understanding of how drought influences vegetation in arid and semi-arid areas.展开更多
The Xiashu loess is a typical Quaternary eolian deposit in southem China and represents an important terrestrial paleoclimate archive in this low-latitude monsoon region. However, the chronological framework of Xiashu...The Xiashu loess is a typical Quaternary eolian deposit in southem China and represents an important terrestrial paleoclimate archive in this low-latitude monsoon region. However, the chronological framework of Xiashu loess deposition has yet to be established. Determining the timing of the onset of Xiashu loess deposition will allow researchers to better understand late Quaternary aridification across the Asian continent, the evolution of the East Asian monsoon and regional environmental changes in subtropical regions. Therefore, in this study, a systematic chronological study of the Xiashu loess is conducted to answer this question. For the first time, magnetostratigraphic classification reveals that the Matuyama/Bnmhes (M/B) reversal is present in the Xiashu loess at two sites in Jiangsu Province, the Qingshan profile at Yizheng and the Dagang core in Zhenjiang. Based on the results of magnetostratigraphy and optically stimulated luminescence (OSL) dating, the age of the lower boundary of the Xiashu loess is estimated to be approximately 0.9 Ma. Consequently, this Xiashu loess deposit is the oldest reported to date and is comparable in age to the red soil deposit in Xuancheng, Anhui Province. The onset of Xiashu loess deposition by 0.9 Ma represents the further expansion of arid range in Asia in the late Quaternary in response to significant aridification and winter monsoon strengthening in this subtropical region. We suggest that these climate changes were primarily driven by global cooling and an increase in high-latitude ice volume in the Northern Hemisphere and that the initiation of Xiashu loess accumulation was a regional response of southern China to the 0.9 Ma global cooling event.展开更多
The tempo-spatial development of the Cenozoic Asian aridification across the Eocene-Oligocene and its controlling factors are important scientific topics in Earth Sciences, which are pertinent to regional and global t...The tempo-spatial development of the Cenozoic Asian aridification across the Eocene-Oligocene and its controlling factors are important scientific topics in Earth Sciences, which are pertinent to regional and global tectonic and climatic events. However, sedimentary rocks preserving the record of aridification during this time from central Asia(ACA) are rare. Here we present a preliminary analysis of sedimentary facies of the lower Paleogene in the northeastern Tajik Basin, which reveals that: the lower part of the studied section is dominated by shallow marine deposits of the Paratethys, the middle part is typical of alternations of eolian dune and fluvial deposits, the upper part is represented by eolian loess-sandy loess(L&SL) like facies, and the top exhibits alternations of fluvial-lacustrine and loess like facies. Based on a chronological framework derived from preliminary magnetostratigraphy, published U-Pb dating of a volcanic ash, and regional litho-stratigraphic correlations, we determine that eolian and L&SL facies accumulated in the northeastern Tajik Basin during the Late Eocene and through most of the Oligocene. These sedimentary units indicate that semi-arid to arid environments of ACA had developed at least since the late Eocene. This initial aridification is closely linked to the westward retreat of the Paratethys that was likely driven by a combination of tectonic activity and sea level changes.展开更多
The northeastern Tibetan Plateau is located at the convergence of the Asian winter and summer monsoons and westerlies; thus, this area has witnessed historic climate changes.The Xunhua basin is an intermontane basin o...The northeastern Tibetan Plateau is located at the convergence of the Asian winter and summer monsoons and westerlies; thus, this area has witnessed historic climate changes.The Xunhua basin is an intermontane basin on the northeastern margin of the Tibetan Plateau.The basin contains more than 2000 m of Cenozoic fluvial–lacustrine sediments, recording a long history of climate and environmental changes.We collected the mid-Miocene sediments from the Xunhua basin and used palynological methods to discuss the relationship between aridification in the interior of Asia, global cooling, and uplift of the Tibetan Plateau.Based on the palynological analysis of the Xigou section, Xunhua basin, the palynological diagram is subdivided into three pollen zones and past vegetation and climate are reconstructed.Zone I, Ephedripites–Nitraridites–Chenopodipollis–Quercoidites(14.0–12.5 Ma), represents mixed shrub–steppe vegetation with a dry and cold climate.In zone II, Pinaceae–Betulaepollenites–Ephedripites–Chenopodipollis–Graminidites(12.5–8.0 Ma), the vegetation and climate conditions improved, even though the vegetation was still dominated by shrub–steppe taxa.Zone III, Ephedripites–Nitrariadites–Chenopodipollis(8.0–5.0 Ma), represents desert steppe vegetation with drier and colder climate.The palynological records suggest that shrub–steppe dominated the whole Xigou section and the content gradually increased, implying a protracted aridification process, although there was an obvious climate improvement during 12.5–8.0 Ma.The aridification in the Xunhua basin and surrounding mountains during 14.0–12.5 Ma was probably related to global cooling induced by the rapid expansion of the East Antarctic ice-sheets and the relatively higher evaporation rate.During the 12.5–8.0 Ma period, although topographic changes(uplift of Jishi Shan) decreased precipitation and strengthened aridification in the Xunhua basin on leeward slopes, the improved vegetation and climate conditions were probably controlled by the decrease in evaporation rates as a result of continuous cooling.From 8.0 to 5.0 Ma, the rapid development of the desert steppe can be attributed to global cooling and uplift of the Tibetan Plateau.展开更多
Tectonic uplift of the Tibetan Plateau(TP) is a major event in the recent geological history of the earth,which produced far-reaching impacts on the Asian and global climates and environments.Since the 1970 s,with the...Tectonic uplift of the Tibetan Plateau(TP) is a major event in the recent geological history of the earth,which produced far-reaching impacts on the Asian and global climates and environments.Since the 1970 s,with the development of theories in planetary fluid dynamics and the improvement of computational environment,numerical simulation based on general circulation models(GCMs) has become an increasingly effective tool in investigations of the physical mechanisms and evolutionary processes of paleoclimate associated with the TP uplift.In this paper,we provide a timely review on representative works in the past four decades on the paleoclimatic responses to the plateau uplift.Numerical simulations to study the paleoclimatic effects of the plateau uplift experienced three stages with increasing complexity:1) plateau uplift as a whole in a single episode,as represented by the no-mountain/with-mountain experiments;2) phased uplift in which the uplifting process was divided into multiple stages and within each the plateau rose by a certain proportion of its current height;and3) sub-regional uplift,in which the focus was the effects of the uplift of a certain area within the TP,such as the northern Tibetan Plateau.These studies discovered the cause-effect relations between the plateau uplift and paleoclimate change,especially for the effects on the evolution of Asian monsoon system and aridification of inland Asia.In this review,we also included examples of current on-going studies,such as the relative impacts of the Himalayas vs.those of the TP as the rain barrier and comparative studies on the paleoclimatic effects of the uplifts of the TP and African highland.Toward the end,we identified five areas as the focus of future research regarding the TP uplift:1) the differences in the evolutionary processes of the South Asian and East Asian monsoons in response to the Himalayas-TP uplift at the regional and sub-regional scales;2) climatic feedbacks;3) long-distance effects(teleconnections) of the TP uplift;4) abrupt climatic changes;and 5) comparisons between the results of numerical simulations and geological evidences.展开更多
A comprehensive understanding of phylogeography requires the integration of knowledge across different organisms,ecosystems,and geographic regions.However,a critical knowledge gap exists in the arid biota of the vast ...A comprehensive understanding of phylogeography requires the integration of knowledge across different organisms,ecosystems,and geographic regions.However,a critical knowledge gap exists in the arid biota of the vast Asian drylands.To narrow this gap,here we test an“out-of-Central Asia”hypothesis for the desert scorpion Mesobuthus mongolicus by combining Bayesian phylogeographic reconstruction and ecological niche modeling.Phylogenetic analyses of one mitochondrial and three nuclear loci and molecular dating revealed that M.mongolicus represents a coherent lineage that diverged from its most closely related lineage in Central Asia about 1.36 Ma and underwent radiation ever since.Bayesian phylogeographic reconstruction indicated that the ancestral population dispersed from Central Asia gradually eastward to the Gobi region via the Junggar Basin,suggesting that the Junggar Basin has severed as a corridor for Quaternary faunal exchange between Central Asia and East Asia.Two major dispersal events occurred probably during interglacial periods(around 0.8 and 0.4 Ma,respectively)when climatic conditions were analogous to present-day status,under which the scorpion achieved its maximum distributional range.M.mongolicus underwent demographic expansion during the Last Glacial Maximum,although the predicted distributional areas were smaller than those at present and during the Last Interglacial.Development of desert ecosystems in northwest China incurred by intensified aridification might have opened up empty habitats that sustained population expansion.Our results extend the spatiotemporal dimensions of trans-Eurasia faunal exchange and suggest that species’adaptation is an important determinant of their phylogeographic and demographic responses to climate changes.展开更多
Eolian loess is widely distributed on the various geomorphic surfaces between 700-2400 m a.s.l. on the northern slope of the Tian Shan. It is formed in a synchronous manner with dust transported from the Gurbantunggut...Eolian loess is widely distributed on the various geomorphic surfaces between 700-2400 m a.s.l. on the northern slope of the Tian Shan. It is formed in a synchronous manner with dust transported from the Gurbantunggut Desert in the Junggar Basin. The thickest section of loess was found in the Shawan and Shihezi regions. Paleomagnetic and climatic proxy analyses of over 71 m of a loess-paleosol sequence on the highest terrace of the Qingshui He (River) in the Shawan show that the paleomagnetic Bruhues/Matuy-ama (B/M) boundary lies at the bottom of paleosol S8, at a depth of 69.5 m, and the bottom of the sequence was estimated to be -0.8 Ma. This implies that the extremely dry climatic conditions in the Junggar Basin and the initial Gurbantunggut Desert were present at least by 0.8 Ma. High-resolution grain size series demonstrate that this area and desert expansion experienced two dramatic periods of desert expansions that occurred at -0.65 Ma and 0.5 Ma, respectively; and the subsequent continuous展开更多
Sporopollen record in the Laojunmiao Section at Yumen in the Hexi Corridor foreland depression at the northern margin of the Tibetan Plateau revealed that during the period of 13.0―11.15 Ma the ecological environment...Sporopollen record in the Laojunmiao Section at Yumen in the Hexi Corridor foreland depression at the northern margin of the Tibetan Plateau revealed that during the period of 13.0―11.15 Ma the ecological environment of the Jiuxi Basin is characterized by steppe vegetation and a semi-moist climate. During 11.16―8.60 Ma prevailed forests of cypress and a still warmer, moister climate; steppe vegetation and dry climate began probably at about 8.6 Ma. Although aridification had been relaxed time and again during 8.40―6.93 Ma (forest-steppe, warm-semi-moist), 6.64―5.67 Ma (open-forest and steppe, warmer-semi-moist) and 5.42―4.96 Ma (steppe, semi-arid), the climate in the region became drier and drier in response to the fre- quent occurrence of aridity during 6.93―6.64 Ma (steppe, semi-arid), 5.67―5.42 Ma (de- sert-steppe, arid), 3.66―3.30 Ma (desert-steppe, arid) and 2.56―2.21 Ma (desert, arid). Perhaps the important findings of our study are the notable expansion of drought-enduring plants during 3.66―3.30 Ma and about 2.56 Ma and the replacement of vegetation by vast arid desert.展开更多
Thirty-five years ago, the idea of a young Qinghai-Tibetan Plateau was proposed based on a comprehensive investigation on the Qinghai-Tibetan Plateau. This hypothesis suggested that the plateau began to rise from a pl...Thirty-five years ago, the idea of a young Qinghai-Tibetan Plateau was proposed based on a comprehensive investigation on the Qinghai-Tibetan Plateau. This hypothesis suggested that the plateau began to rise from a planation surface (relict surface) that was less than 1000 m high formed during the Miocene to Pliocene. The fast uplift, i.e., the Qingzang Movement, began since -3.6 Ma, evidenced by massive molasse deposits around the plateau margin and the synchronous occurrence of faulted basins within the plateau. However, later studies challenged this idea and suggested earlier (8, 14 or 35 Ma) formation of the huge plateau topography. Here we reevaluate the Qingzang Movement on the basis of our previous results and in light of new studies in the recent decades. The plateau margin has been subjected to intensive incision by very large drainages and shows the landscape characteristics of an "infant" stage of the geomorphological cycle. However, these drainages were not formed until 1.7-1.9 Ma; headwater erosion has not yet reached the hinterland of the plateau, so the interior of Tibet is free of significant erosion despite its lofty elevation, and remains an "old stage" landform. If the mean erosion rate is equivalent to the sum of clastic and soluble discharges of the modern rivers draining the Tibetan Plateau, it should have been worn down to a lowland within 8.6 Ma, ignoring tectonic uplift and isostasy. The massive conglomerate around the plateau margin began to deposit at about 3.6 Ma, indicating an increased relief after that time. Furthermore, the Hipparion fauna sites were widely distributed, and elephants, giraffes, and rhinos were abundant in the Qaidam Basin until the early Pliocene. Cenozoic climate change alone is not able to account for the dense occurrence of Hipparion fauna, unless the paleo-elevation of Tibet was lowered. The rise of Tibet since the Qingzang Movement has had a great influence on the Asian interior aridification.展开更多
Study on two loess sections, one located at Wu-wei near the Tengger Desert in northwestern China, another located near Ganzi at the southeast margin of the Tibetan Plateau in southwest China, reveals a coeval drying s...Study on two loess sections, one located at Wu-wei near the Tengger Desert in northwestern China, another located near Ganzi at the southeast margin of the Tibetan Plateau in southwest China, reveals a coeval drying step occurred at -250 kaBP. It is expressed by the increase in eolian grain-size at Wuwei, and by a drastic extension of C4 plants and a decrease of loess chemical weathering intensity at Ganzi. Examination of the available eolian data indicates that the event has also been clearly documented in the loess sections near the deserts in northern China, and in the eolian records from the North Pacific. On the contrary, the signal is rather weak for the central and southern Loess Plateau regions as well as for Central Asia, where the climates are influenced by the southeast Asian monsoon and the westerlies, respectively. Since the climate at Ganzi is under strong control of the southwest Asian monsoon, we interpret this drying step as a result of decreased influence of the southwest summer展开更多
基金jointly supported by the National Natural Science Foundation of China(42361024,42101030,42261079,and 41961058)the Talent Project of Science and Technology in Inner Mongolia of China(NJYT22027 and NJYT23019)the Fundamental Research Funds for the Inner Mongolia Normal University,China(2022JBBJ014 and 2022JBQN093)。
文摘Gross primary productivity(GPP)of vegetation is an important constituent of the terrestrial carbon sinks and is significantly influenced by drought.Understanding the impact of droughts on different types of vegetation GPP provides insight into the spatiotemporal variation of terrestrial carbon sinks,aiding efforts to mitigate the detrimental effects of climate change.In this study,we utilized the precipitation and temperature data from the Climatic Research Unit,the standardized precipitation evapotranspiration index(SPEI),the standardized precipitation index(SPI),and the simulated vegetation GPP using the eddy covariance-light use efficiency(EC-LUE)model to analyze the spatiotemporal change of GPP and its response to different drought indices in the Mongolian Plateau during 1982-2018.The main findings indicated that vegetation GPP decreased in 50.53% of the plateau,mainly in its northern and northeastern parts,while it increased in the remaining 49.47%area.Specifically,meadow steppe(78.92%)and deciduous forest(79.46%)witnessed a significant decrease in vegetation GPP,while alpine steppe(75.08%),cropland(76.27%),and sandy vegetation(87.88%)recovered well.Warming aridification areas accounted for 71.39% of the affected areas,while 28.53% of the areas underwent severe aridification,mainly located in the south and central regions.Notably,the warming aridification areas of desert steppe(92.68%)and sandy vegetation(90.24%)were significant.Climate warming was found to amplify the sensitivity of coniferous forest,deciduous forest,meadow steppe,and alpine steppe GPP to drought.Additionally,the drought sensitivity of vegetation GPP in the Mongolian Plateau gradually decreased as altitude increased.The cumulative effect of drought on vegetation GPP persisted for 3.00-8.00 months.The findings of this study will improve the understanding of how drought influences vegetation in arid and semi-arid areas.
基金supported by the National Natural Science Foundation of China(Grant Nos.41571188,41671191,41690111&40971004)
文摘The Xiashu loess is a typical Quaternary eolian deposit in southem China and represents an important terrestrial paleoclimate archive in this low-latitude monsoon region. However, the chronological framework of Xiashu loess deposition has yet to be established. Determining the timing of the onset of Xiashu loess deposition will allow researchers to better understand late Quaternary aridification across the Asian continent, the evolution of the East Asian monsoon and regional environmental changes in subtropical regions. Therefore, in this study, a systematic chronological study of the Xiashu loess is conducted to answer this question. For the first time, magnetostratigraphic classification reveals that the Matuyama/Bnmhes (M/B) reversal is present in the Xiashu loess at two sites in Jiangsu Province, the Qingshan profile at Yizheng and the Dagang core in Zhenjiang. Based on the results of magnetostratigraphy and optically stimulated luminescence (OSL) dating, the age of the lower boundary of the Xiashu loess is estimated to be approximately 0.9 Ma. Consequently, this Xiashu loess deposit is the oldest reported to date and is comparable in age to the red soil deposit in Xuancheng, Anhui Province. The onset of Xiashu loess deposition by 0.9 Ma represents the further expansion of arid range in Asia in the late Quaternary in response to significant aridification and winter monsoon strengthening in this subtropical region. We suggest that these climate changes were primarily driven by global cooling and an increase in high-latitude ice volume in the Northern Hemisphere and that the initiation of Xiashu loess accumulation was a regional response of southern China to the 0.9 Ma global cooling event.
基金supported by the National Natural Science Foundation of China(Grant Nos.41302144&41130102)the Programme of Introducing Talents of Discipline to Universities(111 Project)(Grant No.B06026)the Open Foundation of MOE Key Laboratory of Western China’s Environmental System,Lanzhou University(Grant No.LZUJBKY-2013-BT01)
文摘The tempo-spatial development of the Cenozoic Asian aridification across the Eocene-Oligocene and its controlling factors are important scientific topics in Earth Sciences, which are pertinent to regional and global tectonic and climatic events. However, sedimentary rocks preserving the record of aridification during this time from central Asia(ACA) are rare. Here we present a preliminary analysis of sedimentary facies of the lower Paleogene in the northeastern Tajik Basin, which reveals that: the lower part of the studied section is dominated by shallow marine deposits of the Paratethys, the middle part is typical of alternations of eolian dune and fluvial deposits, the upper part is represented by eolian loess-sandy loess(L&SL) like facies, and the top exhibits alternations of fluvial-lacustrine and loess like facies. Based on a chronological framework derived from preliminary magnetostratigraphy, published U-Pb dating of a volcanic ash, and regional litho-stratigraphic correlations, we determine that eolian and L&SL facies accumulated in the northeastern Tajik Basin during the Late Eocene and through most of the Oligocene. These sedimentary units indicate that semi-arid to arid environments of ACA had developed at least since the late Eocene. This initial aridification is closely linked to the westward retreat of the Paratethys that was likely driven by a combination of tectonic activity and sea level changes.
基金supported by Foundation of Geological Survey of China (no.1212011121261)the National Natural Science Foundation (no.40902049)the State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (no.GBL11307)
文摘The northeastern Tibetan Plateau is located at the convergence of the Asian winter and summer monsoons and westerlies; thus, this area has witnessed historic climate changes.The Xunhua basin is an intermontane basin on the northeastern margin of the Tibetan Plateau.The basin contains more than 2000 m of Cenozoic fluvial–lacustrine sediments, recording a long history of climate and environmental changes.We collected the mid-Miocene sediments from the Xunhua basin and used palynological methods to discuss the relationship between aridification in the interior of Asia, global cooling, and uplift of the Tibetan Plateau.Based on the palynological analysis of the Xigou section, Xunhua basin, the palynological diagram is subdivided into three pollen zones and past vegetation and climate are reconstructed.Zone I, Ephedripites–Nitraridites–Chenopodipollis–Quercoidites(14.0–12.5 Ma), represents mixed shrub–steppe vegetation with a dry and cold climate.In zone II, Pinaceae–Betulaepollenites–Ephedripites–Chenopodipollis–Graminidites(12.5–8.0 Ma), the vegetation and climate conditions improved, even though the vegetation was still dominated by shrub–steppe taxa.Zone III, Ephedripites–Nitrariadites–Chenopodipollis(8.0–5.0 Ma), represents desert steppe vegetation with drier and colder climate.The palynological records suggest that shrub–steppe dominated the whole Xigou section and the content gradually increased, implying a protracted aridification process, although there was an obvious climate improvement during 12.5–8.0 Ma.The aridification in the Xunhua basin and surrounding mountains during 14.0–12.5 Ma was probably related to global cooling induced by the rapid expansion of the East Antarctic ice-sheets and the relatively higher evaporation rate.During the 12.5–8.0 Ma period, although topographic changes(uplift of Jishi Shan) decreased precipitation and strengthened aridification in the Xunhua basin on leeward slopes, the improved vegetation and climate conditions were probably controlled by the decrease in evaporation rates as a result of continuous cooling.From 8.0 to 5.0 Ma, the rapid development of the desert steppe can be attributed to global cooling and uplift of the Tibetan Plateau.
基金National Natural Science Foundation of China(Grant Nos.40825008,41075067,40921120406)the National Basic Research Program of China(Grant No.2010CB833406)
文摘Tectonic uplift of the Tibetan Plateau(TP) is a major event in the recent geological history of the earth,which produced far-reaching impacts on the Asian and global climates and environments.Since the 1970 s,with the development of theories in planetary fluid dynamics and the improvement of computational environment,numerical simulation based on general circulation models(GCMs) has become an increasingly effective tool in investigations of the physical mechanisms and evolutionary processes of paleoclimate associated with the TP uplift.In this paper,we provide a timely review on representative works in the past four decades on the paleoclimatic responses to the plateau uplift.Numerical simulations to study the paleoclimatic effects of the plateau uplift experienced three stages with increasing complexity:1) plateau uplift as a whole in a single episode,as represented by the no-mountain/with-mountain experiments;2) phased uplift in which the uplifting process was divided into multiple stages and within each the plateau rose by a certain proportion of its current height;and3) sub-regional uplift,in which the focus was the effects of the uplift of a certain area within the TP,such as the northern Tibetan Plateau.These studies discovered the cause-effect relations between the plateau uplift and paleoclimate change,especially for the effects on the evolution of Asian monsoon system and aridification of inland Asia.In this review,we also included examples of current on-going studies,such as the relative impacts of the Himalayas vs.those of the TP as the rain barrier and comparative studies on the paleoclimatic effects of the uplifts of the TP and African highland.Toward the end,we identified five areas as the focus of future research regarding the TP uplift:1) the differences in the evolutionary processes of the South Asian and East Asian monsoons in response to the Himalayas-TP uplift at the regional and sub-regional scales;2) climatic feedbacks;3) long-distance effects(teleconnections) of the TP uplift;4) abrupt climatic changes;and 5) comparisons between the results of numerical simulations and geological evidences.
基金This study was supported by the National Natural Science Foundation of China(grant nos.31772435,32170455)C.-M.S.is also supported by a starting fund from Hebei Agricultural University and the State Key Laboratory of North China Crop Improvement and Regulation(YJ2020028).
文摘A comprehensive understanding of phylogeography requires the integration of knowledge across different organisms,ecosystems,and geographic regions.However,a critical knowledge gap exists in the arid biota of the vast Asian drylands.To narrow this gap,here we test an“out-of-Central Asia”hypothesis for the desert scorpion Mesobuthus mongolicus by combining Bayesian phylogeographic reconstruction and ecological niche modeling.Phylogenetic analyses of one mitochondrial and three nuclear loci and molecular dating revealed that M.mongolicus represents a coherent lineage that diverged from its most closely related lineage in Central Asia about 1.36 Ma and underwent radiation ever since.Bayesian phylogeographic reconstruction indicated that the ancestral population dispersed from Central Asia gradually eastward to the Gobi region via the Junggar Basin,suggesting that the Junggar Basin has severed as a corridor for Quaternary faunal exchange between Central Asia and East Asia.Two major dispersal events occurred probably during interglacial periods(around 0.8 and 0.4 Ma,respectively)when climatic conditions were analogous to present-day status,under which the scorpion achieved its maximum distributional range.M.mongolicus underwent demographic expansion during the Last Glacial Maximum,although the predicted distributional areas were smaller than those at present and during the Last Interglacial.Development of desert ecosystems in northwest China incurred by intensified aridification might have opened up empty habitats that sustained population expansion.Our results extend the spatiotemporal dimensions of trans-Eurasia faunal exchange and suggest that species’adaptation is an important determinant of their phylogeographic and demographic responses to climate changes.
基金This work was co-supported by China's 'Excellent Researchers Fund' of the National Natural Science Foundation of China (Grant No. 49928J01)'Hundred Talents Project' of the Chinese Academy of Sciences (Renjiaozi[2000]005)the National Tibetan Project (
文摘Eolian loess is widely distributed on the various geomorphic surfaces between 700-2400 m a.s.l. on the northern slope of the Tian Shan. It is formed in a synchronous manner with dust transported from the Gurbantunggut Desert in the Junggar Basin. The thickest section of loess was found in the Shawan and Shihezi regions. Paleomagnetic and climatic proxy analyses of over 71 m of a loess-paleosol sequence on the highest terrace of the Qingshui He (River) in the Shawan show that the paleomagnetic Bruhues/Matuy-ama (B/M) boundary lies at the bottom of paleosol S8, at a depth of 69.5 m, and the bottom of the sequence was estimated to be -0.8 Ma. This implies that the extremely dry climatic conditions in the Junggar Basin and the initial Gurbantunggut Desert were present at least by 0.8 Ma. High-resolution grain size series demonstrate that this area and desert expansion experienced two dramatic periods of desert expansions that occurred at -0.65 Ma and 0.5 Ma, respectively; and the subsequent continuous
基金supported by the Key Basic Research and Development Plan(Grant No.G1998040809)the National Natural Sci ence Foundation of China(Grant No.40171094)the Hundred Talents Program of the Chinese Acadeny of Sciences(Renjiaozi[2000]05).
文摘Sporopollen record in the Laojunmiao Section at Yumen in the Hexi Corridor foreland depression at the northern margin of the Tibetan Plateau revealed that during the period of 13.0―11.15 Ma the ecological environment of the Jiuxi Basin is characterized by steppe vegetation and a semi-moist climate. During 11.16―8.60 Ma prevailed forests of cypress and a still warmer, moister climate; steppe vegetation and dry climate began probably at about 8.6 Ma. Although aridification had been relaxed time and again during 8.40―6.93 Ma (forest-steppe, warm-semi-moist), 6.64―5.67 Ma (open-forest and steppe, warmer-semi-moist) and 5.42―4.96 Ma (steppe, semi-arid), the climate in the region became drier and drier in response to the fre- quent occurrence of aridity during 6.93―6.64 Ma (steppe, semi-arid), 5.67―5.42 Ma (de- sert-steppe, arid), 3.66―3.30 Ma (desert-steppe, arid) and 2.56―2.21 Ma (desert, arid). Perhaps the important findings of our study are the notable expansion of drought-enduring plants during 3.66―3.30 Ma and about 2.56 Ma and the replacement of vegetation by vast arid desert.
基金supported by the National Natural Science Foundation of China(Grant Nos.41330745,41171014&41271017)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Thirty-five years ago, the idea of a young Qinghai-Tibetan Plateau was proposed based on a comprehensive investigation on the Qinghai-Tibetan Plateau. This hypothesis suggested that the plateau began to rise from a planation surface (relict surface) that was less than 1000 m high formed during the Miocene to Pliocene. The fast uplift, i.e., the Qingzang Movement, began since -3.6 Ma, evidenced by massive molasse deposits around the plateau margin and the synchronous occurrence of faulted basins within the plateau. However, later studies challenged this idea and suggested earlier (8, 14 or 35 Ma) formation of the huge plateau topography. Here we reevaluate the Qingzang Movement on the basis of our previous results and in light of new studies in the recent decades. The plateau margin has been subjected to intensive incision by very large drainages and shows the landscape characteristics of an "infant" stage of the geomorphological cycle. However, these drainages were not formed until 1.7-1.9 Ma; headwater erosion has not yet reached the hinterland of the plateau, so the interior of Tibet is free of significant erosion despite its lofty elevation, and remains an "old stage" landform. If the mean erosion rate is equivalent to the sum of clastic and soluble discharges of the modern rivers draining the Tibetan Plateau, it should have been worn down to a lowland within 8.6 Ma, ignoring tectonic uplift and isostasy. The massive conglomerate around the plateau margin began to deposit at about 3.6 Ma, indicating an increased relief after that time. Furthermore, the Hipparion fauna sites were widely distributed, and elephants, giraffes, and rhinos were abundant in the Qaidam Basin until the early Pliocene. Cenozoic climate change alone is not able to account for the dense occurrence of Hipparion fauna, unless the paleo-elevation of Tibet was lowered. The rise of Tibet since the Qingzang Movement has had a great influence on the Asian interior aridification.
基金This work was supportedby the National Natural Science Foundation of China (Grant Nos. 49894176, 40125001 and 49928101)the National Project for the Basic Research on Tibetan Plateau (Grant No. G1998040809).
文摘Study on two loess sections, one located at Wu-wei near the Tengger Desert in northwestern China, another located near Ganzi at the southeast margin of the Tibetan Plateau in southwest China, reveals a coeval drying step occurred at -250 kaBP. It is expressed by the increase in eolian grain-size at Wuwei, and by a drastic extension of C4 plants and a decrease of loess chemical weathering intensity at Ganzi. Examination of the available eolian data indicates that the event has also been clearly documented in the loess sections near the deserts in northern China, and in the eolian records from the North Pacific. On the contrary, the signal is rather weak for the central and southern Loess Plateau regions as well as for Central Asia, where the climates are influenced by the southeast Asian monsoon and the westerlies, respectively. Since the climate at Ganzi is under strong control of the southwest Asian monsoon, we interpret this drying step as a result of decreased influence of the southwest summer