A philosophy for the design of novel,lightweight,multi-layered armor,referred to as Composite Armor Philosophy(CAP),which can adapt to the passive protection of light-,medium-,and heavy-armored vehicles,is presented i...A philosophy for the design of novel,lightweight,multi-layered armor,referred to as Composite Armor Philosophy(CAP),which can adapt to the passive protection of light-,medium-,and heavy-armored vehicles,is presented in this study.CAP can serve as a guiding principle to assist designers in comprehending the distinct roles fulfilled by each component.The CAP proposal comprises four functional layers,organized in a suggested hierarchy of materials.Particularly notable is the inclusion of a ceramic-composite principle,representing an advanced and innovative solution in the field of armor design.This paper showcases real-world defense industry applications,offering case studies that demonstrate the effectiveness of this advanced approach.CAP represents a significant milestone in the history of passive protection,marking an evolutionary leap in the field.This philosophical approach provides designers with a powerful toolset with which to enhance the protection capabilities of military vehicles,making them more resilient and better equipped to meet the challenges of modern warfare.展开更多
In order to restrain the high pumping voltage of braking procedure which is harmful to the system of electric armored vehicle. Based on the analysis of pumping voltage of the braking procedure, the relation between pu...In order to restrain the high pumping voltage of braking procedure which is harmful to the system of electric armored vehicle. Based on the analysis of pumping voltage of the braking procedure, the relation between pumping voltage and PWM ratio is derived and a new digital control method to restrain the pumping voltage by changing PWM ratio is put forward. Because the capacitance is decreased effectively, the volume of controller is reduced and the performance to price ratio is improved. The results of computer simulation and experiment proved that this method is feasible and valid.展开更多
Drive system is the key device of armored chassis. Its working state and reliability influence the maneuver performance of armored chassis directly. In order to simulate the failure process and evaluate the service re...Drive system is the key device of armored chassis. Its working state and reliability influence the maneuver performance of armored chassis directly. In order to simulate the failure process and evaluate the service reliability of drive system in training or battle missions,a new kind of dynamic simulation model and driving simulation platform of the complete drive system were established based on virtual prototype and finite element technology in this paper. Using the platform, the kinematics and dynamic characteristics of drive system were studied and analyzed in detail,the dynamic load spectrum of key components was obtained,the service life was predicted, and the service reliability evaluation results were provided. A simulation example of transmission gear was shown to illustrate the simulation and evaluation process. The result proves that the simulation method not only can be used to compute and evaluate the service reliability of complex mechanical mechanism, but also has high precision and reasonable computational cost. Therefore,simulation and reliability analysis based on virtual prototype of the armored chassis drive system will provide scientific reference for the formulation of armored chassis reasonable repair cycle.展开更多
Considering the steering characters of one type of wheeled armored vehicle, a brushless direct current (DC) motor is adapted as the actuator for steering control. After investigating the known algorithms, one kind o...Considering the steering characters of one type of wheeled armored vehicle, a brushless direct current (DC) motor is adapted as the actuator for steering control. After investigating the known algorithms, one kind of algorithm, which combines the fuzzy logic control with the self-adapting PID control and the startup and pre-hrake control, is put forward. Then a test-bed is constructed, and an experiment is conducted. The result of experiment confirms the validity of this algorithm in steering control of wheeled armored vehicle with brushless DC motor.展开更多
The armored cable used in a deep-sea remotely operated vehicle(ROV) may undergo large displacement motion when subjected to dynamic actions of ship heave motion and ocean current. A novel geometrically exact finite el...The armored cable used in a deep-sea remotely operated vehicle(ROV) may undergo large displacement motion when subjected to dynamic actions of ship heave motion and ocean current. A novel geometrically exact finite element model for two-dimensional dynamic analysis of armored cable is presented. This model accounts for the geometric nonlinearities of large displacement of the armored cable, and effects of axial load and bending stiffness. The governing equations are derived by consistent linearization and finite element discretization of the total weak form of the armored cable system, and solved by the Newmark time integration method. To make the solution procedure avoid falling into the local extreme points, a simple adaptive stepping strategy is proposed. The presented model is validated via actual measured data. Results for dynamic configurations, motion and tension of both ends of the armored cable, and resonance-zone are presented for two numerical cases, including the dynamic analysis under the case of only ship heave motion and the case of joint action of ship heave motion and ocean current. The dynamics analysis can provide important reference for the design or product selection of the armored cable in a deep-sea ROV system so as to improve the safety of its marine operation under the sea state of 4 or above.展开更多
Vibration monitoring and vibration severity evaluation of armored vehicle transmission are realized by additional sensors. An algorithm of vibration severity in frequency domain is presented. The algorithm has powerfu...Vibration monitoring and vibration severity evaluation of armored vehicle transmission are realized by additional sensors. An algorithm of vibration severity in frequency domain is presented. The algorithm has powerful applicability for signal type and flexible selectivity for frequency range,and avoids the processing of signal conversion used calculus and filtering compared to the algorithm of vibration severity in time domain. An applied example is given in company with attentive proceedings and measures for improving evaluation effect.展开更多
In view of the low level testability of armored equipment,the important significance of armored equipment testability growth is discussed in this paper.The failure mode effects and criticality analysis( FMECA) method ...In view of the low level testability of armored equipment,the important significance of armored equipment testability growth is discussed in this paper.The failure mode effects and criticality analysis( FMECA) method to realize testability growth is introduced.Centering on the testability growth demands of new armored equipment,the deficiencies of traditional FMECA are analyzed.And an enhanced FMECA( EFMECA) method is proposed.The method increases the analysis contents,combines the information before the failure occurrence and impending failure modes together organically.Then the failure symptoms is analyzed,the failure modes and effects is determined,and the state development trend is predicted.Finally,the application of EFMECA method is illustrated by the example of the failure mode of typical armored equipment engine.展开更多
A new mathematical model for the overtopping against seawalls armored with artificial units in regular waves was established. The 2-D numerical wave flume, based on the Reynolds Averaged Navier-Stokes (RANS) equatio...A new mathematical model for the overtopping against seawalls armored with artificial units in regular waves was established. The 2-D numerical wave flume, based on the Reynolds Averaged Navier-Stokes (RANS) equations and the standard κ-ε turbulence model, was developed to simulate the turbulent flows with the free surface, in which the Volume Of Fluid (VOF) method was used to handle the large deformation of the free surface and the relaxation approach of combined wave generation and absorbing was implemented. In order to consider the effects of energy dissipation due to the armors on a slope seawall, a porous media model was proposed and implemented in the numerical wave flume. A series of physical model experiments were carried out in the same condition of the numerical simulation to determine the drag coefficient in the porous media model in terms of the overtopping discharge. Compared the computational value of overtopping over the seawall with the experimental data, the values of the effective drag coefficient was calibrated for the layers of blocks at different locations along the seawalls.展开更多
An armored face conveyor(AFC) is a key piece of equipment for a fully mechanized long-wall mining system and is currently the only means for transporting bulk material in hard coal mines. To date, the AFC power train ...An armored face conveyor(AFC) is a key piece of equipment for a fully mechanized long-wall mining system and is currently the only means for transporting bulk material in hard coal mines. To date, the AFC power train design has mainly been based on heuristics obtained via experience, coupled with simple calculations, which cannot take the dynamic behaviors and coupling effects of the components into consideration. Therefore, model-based and simulation-driven design is preferred. In this paper, a new design and analysis methodology for an AFC power train is presented to achieve the optimal dynamic characteristics and transmission performance. A preliminary design procedure for a power train is first introduced. Then, a system-level hydro-mechatronic model of the power train is built to evaluate and optimize the preliminary scheme. Sub-models, including those for the motors, fluid couplers, gearboxes, and chain, are obtained according to their individual disciplines and assembled to form the system-level model. The chain sub-system is discretized into multiple finite elements. Governing equations are established for each element based on the Newton Euler approach and assembled according to the topological structure of the chain system. In order to make the new approach applicable for engineers, a design and analysis software is developed, with a graphical user interface that involves the whole design process. MATLAB/SIMULINK is used as the computational engine, and Visual C++ is adopted to develop the interactive software framework. Simulations for the SGZ1000/2000 type AFC are provided as an illustrative case study to validate the effectiveness and practicality of the model and software package.展开更多
The wound mechanism,injury characteristics and treatment principles of anti-armored vehicle ammunition against armored crew in the past 20 years are summarized in this paper.Shock vibration,metal jet,depleted uranium ...The wound mechanism,injury characteristics and treatment principles of anti-armored vehicle ammunition against armored crew in the past 20 years are summarized in this paper.Shock vibration,metal jet,depleted uranium aerosol and post armor breaking effect are the main factors for wounding armored crew.Their prominent characteristics are severe injury,high incidence of bone fracture,high rate of depleted uranium injury,and high incidence of multiple/combined injuries.During the treatment,attention must be paid on that the space of armored vehicle is limited,and the casualties should be moved outside of the cabin for comprehensive treatment.Especially,the management of depleted uranium injury and burn/inhalation injury are more important than other injuries for the armored wounds.展开更多
Time for single vehicle combat preparation(TSVCP) is an important characteristic parameter for the operational support feature of armored vehicle. During the development phase, how to validate the TSVCP of armored veh...Time for single vehicle combat preparation(TSVCP) is an important characteristic parameter for the operational support feature of armored vehicle. During the development phase, how to validate the TSVCP of armored vehicle through analytic method is a difficult issue in analysis and validation of vehicle supportability.This paper uses Monte Carlo approach and builds a working model for single vehicle combat preparation(SVCP)of armored vehicle, thus realizes the prediction and analysis of the TSVCP of armored vehicle, and finally validates the effectiveness of the approach by example.展开更多
Human reliability analysis(HRA) is an expansion of man-machine engineering. It is also a new multidisciplinary based on behavioral science, cognitive science, information processing, system analysis and probability st...Human reliability analysis(HRA) is an expansion of man-machine engineering. It is also a new multidisciplinary based on behavioral science, cognitive science, information processing, system analysis and probability statistics in order to analyze, predict, reduce and prevent human errors. Firstly, the quantitative analysis model of HRA is proposed based on Markov process theory by using human error probability(HEP) and error correction cycle(ECC) as parameters. And human reliability evaluation criterion is built. Then, the HRA process considering error correction is proposed based on cognitive reliability and error analysis method(CREAM). Finally, according to the characteristics of armored vehicle system, common performance condition(CPC) in CREAM is improved.A reliability impact index is characterized by the overall contexts of tasks. Human reliability evaluation criterion of armored vehicle system is formulated. And the result of HRA is obtained based on the method presented in this paper. In addition, the relative weights are estimated by combining scale of 10/10—18/2 and analytical hierarchy process(AHP), and the triangular fuzzy number considering confidence factor and optimism index is adopted in order to reduce the subjectivity. The analysis results show that the method presented in this paper is reasonable and feasible. Meantime, the method can provide guidance for human reliability analysis of other weapon systems.展开更多
The core of grid technology is just to solve the problem of resource share and to eliminate information island and resource island. Thus, it is a perfect approach to apply the grid technology to armored equipment mate...The core of grid technology is just to solve the problem of resource share and to eliminate information island and resource island. Thus, it is a perfect approach to apply the grid technology to armored equipment materiel support. Firstly, the military and function demands of armored equipment materiel support grid are analyzed. Besides, according to the function demand, the system structure of armored equipment materiel support grid is designed. Finally, the organizational structure of armored equipment materiel support grid is established in this paper based on actual armored equipment materiel support.展开更多
The abalone shell,a composite material whose cross-section is composed of inorganic and organic layers,has high strength and toughness.Inspired by the abalone shell,several multi-layer composite plates with different ...The abalone shell,a composite material whose cross-section is composed of inorganic and organic layers,has high strength and toughness.Inspired by the abalone shell,several multi-layer composite plates with different layer sequences and thicknesses are studied as bullet-proof material in this paper.To investigate the ballistic performance of this multi-layer structure,the complete characterization model and related material parameters of large deformation,failure and fracture ofAl_(2)O_(3)ceramics andCarbon Fiber Reinforced Polymer(CFRP)are studied.Then,3D finite element models of the proposed composite plates with different layer sequences and thicknesses impacted by a 12.7 mm armor-piercing incendiary(API)are built using Abaqus to predict failure.The simulation results show that the CFRP/Al2O3 ceramic/Ultrahigh Molecular Weight Polyethylene(UHMWPE)/CFRP(1 mm/4 mm/4 mm/1 mm)composite is the optimized stack of layers.The simulation results under specified layer sequence and thickness have a reasonable correlation with the experimental results and reflect the failure and fracture of the multi-layer composite protective armor.展开更多
To enhance the protective performance of ceramic composite armor,ballistic penetration experiments were conducted on Al_(2)O_(3) ceramic-ultra-high molecular weight polyethylene(UHMWPE)composite armor with different t...To enhance the protective performance of ceramic composite armor,ballistic penetration experiments were conducted on Al_(2)O_(3) ceramic-ultra-high molecular weight polyethylene(UHMWPE)composite armor with different thickness configurations.The damage and failure modes of hard projectiles and ceramic-fiber composite targets were analyzed.The recovered projectiles and ceramic fragments were sieved and weighed at multiple stages,revealing a positive correlation between the degree of fragmentation of the projectiles and ceramics and the overall ballistic resistance of the composite targets.Numerical simulations were performed using the LS-DYNA finite element software,and the simulation results showed high consistency with the experimental results,confirming the validity of the material parameters.The results indicate that the projectile heads primarily exhibited crushing and abrasive fragmentation.Larger projectile fragments mainly resulted from tensile and shear stress-induced failure.The failure modes of the composite targets included the formation of ceramic cones and radial cracks under high-velocity impacts.The UHMWPE laminated plates exhibited interlayer separation caused by tensile waves,permanent plastic deformation of the rear surface bulging,and perforation failure primarily due to shear forces.Through extended numerical simulations,while maintaining the same areal density and configuration of9 mm Al_(2)O_(3) ceramic+12 mm UHMWPE laminated composite armor,the thickness configurations of the Al_(2)O_(3) ceramic and UHMWPE laminated backplates were varied,and various thicknesses of UHMWPE laminates were simulated as the cover layer for the ceramic panels.The simulation results indicated that the composite armor configuration of 10 mm Al_(2)O_(3) ceramic+8 mm UHMWPE composite armor increased energy absorption by13.48%.When altering the cover layer thickness,a 4 mm UHMWPE+9 mm Al_(2)O_(3)+8 mm UHMWPE composite armor demonstrated a 27.11%improvement in energy absorption,showing a relatively significant enhancement.展开更多
The Altomani&Sons Collection owns a remarkable newly discovered portrait of Guidobaldo II della Rovere,Duke of Urbino(1514-1574),a historical military figure who was a condottiere,ruler of Urbino,Commander-in-chie...The Altomani&Sons Collection owns a remarkable newly discovered portrait of Guidobaldo II della Rovere,Duke of Urbino(1514-1574),a historical military figure who was a condottiere,ruler of Urbino,Commander-in-chief of the Papal Estate,and Perfect of Rome,as well as a collector and patron of the Fine Arts.Camilla Guerrieri Nati(1628-1694),a seventeenth-century Italian painter from Fossombrone(in the province of Pesaro and Urbino),portrayed this heroic personage surrounded by emblems associated with his military courage and leadership,including his plumed burgonet helmet,metal gilded armor,a necklace with the golden fleece,and batons of secular and religious dominions.This oil painting on copper-considered a precious metal at the time-emphasizes the importance of the commission.The material and technique also reveals a unique artistic achievement in that it provides the painting with a smooth,reflective surface and vibrant coloration,symbolizing precious imagery.展开更多
This is a very timely review of body armour materials and systems since new test standards are currently being written, or reviewed, and new, innovative products released. Of greatest importance, however, is the recen...This is a very timely review of body armour materials and systems since new test standards are currently being written, or reviewed, and new, innovative products released. Of greatest importance, however, is the recent evolution, and maturity, of the Ultra High Molecular Weight Polyethylene fibres enabling a completely new style of system to evolve e a stackable system of Hard Armour Plates. The science of body armour materials is quickly reviewed with emphasis upon current understanding of relevant energy-absorbing mechanisms in fibres, fabrics, polymeric laminates and ceramics. The trend in ongoing developments in ballistic fibres is then reviewed, analysed and future projections offered. Weaknesses in some of the ceramic grades are highlighted as is the value of using cladding materials to improve the robustness, and multi-strike performance, of Hard Armour Plates. Finally, with the drive for lighter, and therefore smaller, soft armour systems for military personnel the challenges for armour designers are reported, and the importance of the relative size of the Hard Armour Plate to the Soft Armour Insert is strongly emphasised.展开更多
Chain damage is a new phenomenon that occurs when a reactive jet impacts and penetrates multispaced plates.The reactive jet produces mechanical perforations on the spaced plates by its kinetic energy(KE),and then resu...Chain damage is a new phenomenon that occurs when a reactive jet impacts and penetrates multispaced plates.The reactive jet produces mechanical perforations on the spaced plates by its kinetic energy(KE),and then results in unusual chain rupturing effects and excessive structural damage on the spaced plates by its deflagration reaction.In the present study,the chain damage behavior is initially demonstrated by experiments.The reactive liners,composed of 26 wt%Al and 74 wt%PTFE,are fabricated through a pressing and sintering process.Three reactive liner thicknesses of 0.08 CD,0.10 CD and 0.12 CD(charge diameter)are chosen to carry out the chain damage experiments.The results show a chain rupturing phenomenon caused by reactive jet.The constant reaction delay time and the different penetration velocities of reactive jets from liners with different thicknesses result in the variation of the deflagration position,which consequently determines the number of ruptured plates behind the armor.Then,the finite-element code AUTODYN-3D has been used to simulate the kinetic energy only-induced rupturing effects on plates,based on the mechanism of behind armor debris(BAD).The significant discrepancies between simulations and experiments indicate that one enhanced damage mechanism,the behind armor blast(BAB),has acted on the ruptured plates.Finally,a theoretical model is used to consider the BAB-induced enhancement,and the analysis shows that the rupturing area on aluminum plates depends strongly upon the KE only-induced pre-perforations,the mass of reactive materials,and the thickness of plates.展开更多
基金co-financed by the European Regional Development Fund of the European UnionGreek national funds through the Operational Program Competitiveness,Entrepreneurship and Innovation,under the call RESEARCH-CREATE-INNOVATE(project code:T1EDK-04429)。
文摘A philosophy for the design of novel,lightweight,multi-layered armor,referred to as Composite Armor Philosophy(CAP),which can adapt to the passive protection of light-,medium-,and heavy-armored vehicles,is presented in this study.CAP can serve as a guiding principle to assist designers in comprehending the distinct roles fulfilled by each component.The CAP proposal comprises four functional layers,organized in a suggested hierarchy of materials.Particularly notable is the inclusion of a ceramic-composite principle,representing an advanced and innovative solution in the field of armor design.This paper showcases real-world defense industry applications,offering case studies that demonstrate the effectiveness of this advanced approach.CAP represents a significant milestone in the history of passive protection,marking an evolutionary leap in the field.This philosophical approach provides designers with a powerful toolset with which to enhance the protection capabilities of military vehicles,making them more resilient and better equipped to meet the challenges of modern warfare.
文摘In order to restrain the high pumping voltage of braking procedure which is harmful to the system of electric armored vehicle. Based on the analysis of pumping voltage of the braking procedure, the relation between pumping voltage and PWM ratio is derived and a new digital control method to restrain the pumping voltage by changing PWM ratio is put forward. Because the capacitance is decreased effectively, the volume of controller is reduced and the performance to price ratio is improved. The results of computer simulation and experiment proved that this method is feasible and valid.
文摘Drive system is the key device of armored chassis. Its working state and reliability influence the maneuver performance of armored chassis directly. In order to simulate the failure process and evaluate the service reliability of drive system in training or battle missions,a new kind of dynamic simulation model and driving simulation platform of the complete drive system were established based on virtual prototype and finite element technology in this paper. Using the platform, the kinematics and dynamic characteristics of drive system were studied and analyzed in detail,the dynamic load spectrum of key components was obtained,the service life was predicted, and the service reliability evaluation results were provided. A simulation example of transmission gear was shown to illustrate the simulation and evaluation process. The result proves that the simulation method not only can be used to compute and evaluate the service reliability of complex mechanical mechanism, but also has high precision and reasonable computational cost. Therefore,simulation and reliability analysis based on virtual prototype of the armored chassis drive system will provide scientific reference for the formulation of armored chassis reasonable repair cycle.
文摘Considering the steering characters of one type of wheeled armored vehicle, a brushless direct current (DC) motor is adapted as the actuator for steering control. After investigating the known algorithms, one kind of algorithm, which combines the fuzzy logic control with the self-adapting PID control and the startup and pre-hrake control, is put forward. Then a test-bed is constructed, and an experiment is conducted. The result of experiment confirms the validity of this algorithm in steering control of wheeled armored vehicle with brushless DC motor.
基金Project(2008AA09Z201)supported by the National High Technology Research and Development Program of China
文摘The armored cable used in a deep-sea remotely operated vehicle(ROV) may undergo large displacement motion when subjected to dynamic actions of ship heave motion and ocean current. A novel geometrically exact finite element model for two-dimensional dynamic analysis of armored cable is presented. This model accounts for the geometric nonlinearities of large displacement of the armored cable, and effects of axial load and bending stiffness. The governing equations are derived by consistent linearization and finite element discretization of the total weak form of the armored cable system, and solved by the Newmark time integration method. To make the solution procedure avoid falling into the local extreme points, a simple adaptive stepping strategy is proposed. The presented model is validated via actual measured data. Results for dynamic configurations, motion and tension of both ends of the armored cable, and resonance-zone are presented for two numerical cases, including the dynamic analysis under the case of only ship heave motion and the case of joint action of ship heave motion and ocean current. The dynamics analysis can provide important reference for the design or product selection of the armored cable in a deep-sea ROV system so as to improve the safety of its marine operation under the sea state of 4 or above.
基金Sponsored by National Defense Science and Technology Key Lab Foundation of China (51457120104JB3505)
文摘Vibration monitoring and vibration severity evaluation of armored vehicle transmission are realized by additional sensors. An algorithm of vibration severity in frequency domain is presented. The algorithm has powerful applicability for signal type and flexible selectivity for frequency range,and avoids the processing of signal conversion used calculus and filtering compared to the algorithm of vibration severity in time domain. An applied example is given in company with attentive proceedings and measures for improving evaluation effect.
文摘In view of the low level testability of armored equipment,the important significance of armored equipment testability growth is discussed in this paper.The failure mode effects and criticality analysis( FMECA) method to realize testability growth is introduced.Centering on the testability growth demands of new armored equipment,the deficiencies of traditional FMECA are analyzed.And an enhanced FMECA( EFMECA) method is proposed.The method increases the analysis contents,combines the information before the failure occurrence and impending failure modes together organically.Then the failure symptoms is analyzed,the failure modes and effects is determined,and the state development trend is predicted.Finally,the application of EFMECA method is illustrated by the example of the failure mode of typical armored equipment engine.
基金Project supported by the National Natural Science Foundation of China (Grant No.10572093)the Doctorial Program Foundation of MOE of China(Grant No. 20060248046).
文摘A new mathematical model for the overtopping against seawalls armored with artificial units in regular waves was established. The 2-D numerical wave flume, based on the Reynolds Averaged Navier-Stokes (RANS) equations and the standard κ-ε turbulence model, was developed to simulate the turbulent flows with the free surface, in which the Volume Of Fluid (VOF) method was used to handle the large deformation of the free surface and the relaxation approach of combined wave generation and absorbing was implemented. In order to consider the effects of energy dissipation due to the armors on a slope seawall, a porous media model was proposed and implemented in the numerical wave flume. A series of physical model experiments were carried out in the same condition of the numerical simulation to determine the drag coefficient in the porous media model in terms of the overtopping discharge. Compared the computational value of overtopping over the seawall with the experimental data, the values of the effective drag coefficient was calibrated for the layers of blocks at different locations along the seawalls.
基金supported by the National Natural Science Foundation of China(Grant No.51375330)the Leading Talent Project of Guangdong Province
文摘An armored face conveyor(AFC) is a key piece of equipment for a fully mechanized long-wall mining system and is currently the only means for transporting bulk material in hard coal mines. To date, the AFC power train design has mainly been based on heuristics obtained via experience, coupled with simple calculations, which cannot take the dynamic behaviors and coupling effects of the components into consideration. Therefore, model-based and simulation-driven design is preferred. In this paper, a new design and analysis methodology for an AFC power train is presented to achieve the optimal dynamic characteristics and transmission performance. A preliminary design procedure for a power train is first introduced. Then, a system-level hydro-mechatronic model of the power train is built to evaluate and optimize the preliminary scheme. Sub-models, including those for the motors, fluid couplers, gearboxes, and chain, are obtained according to their individual disciplines and assembled to form the system-level model. The chain sub-system is discretized into multiple finite elements. Governing equations are established for each element based on the Newton Euler approach and assembled according to the topological structure of the chain system. In order to make the new approach applicable for engineers, a design and analysis software is developed, with a graphical user interface that involves the whole design process. MATLAB/SIMULINK is used as the computational engine, and Visual C++ is adopted to develop the interactive software framework. Simulations for the SGZ1000/2000 type AFC are provided as an illustrative case study to validate the effectiveness and practicality of the model and software package.
文摘The wound mechanism,injury characteristics and treatment principles of anti-armored vehicle ammunition against armored crew in the past 20 years are summarized in this paper.Shock vibration,metal jet,depleted uranium aerosol and post armor breaking effect are the main factors for wounding armored crew.Their prominent characteristics are severe injury,high incidence of bone fracture,high rate of depleted uranium injury,and high incidence of multiple/combined injuries.During the treatment,attention must be paid on that the space of armored vehicle is limited,and the casualties should be moved outside of the cabin for comprehensive treatment.Especially,the management of depleted uranium injury and burn/inhalation injury are more important than other injuries for the armored wounds.
文摘Time for single vehicle combat preparation(TSVCP) is an important characteristic parameter for the operational support feature of armored vehicle. During the development phase, how to validate the TSVCP of armored vehicle through analytic method is a difficult issue in analysis and validation of vehicle supportability.This paper uses Monte Carlo approach and builds a working model for single vehicle combat preparation(SVCP)of armored vehicle, thus realizes the prediction and analysis of the TSVCP of armored vehicle, and finally validates the effectiveness of the approach by example.
基金the Technical Basis Projects of China’s Ministry of Industry and Information Technology(No.ZQ092012B003)
文摘Human reliability analysis(HRA) is an expansion of man-machine engineering. It is also a new multidisciplinary based on behavioral science, cognitive science, information processing, system analysis and probability statistics in order to analyze, predict, reduce and prevent human errors. Firstly, the quantitative analysis model of HRA is proposed based on Markov process theory by using human error probability(HEP) and error correction cycle(ECC) as parameters. And human reliability evaluation criterion is built. Then, the HRA process considering error correction is proposed based on cognitive reliability and error analysis method(CREAM). Finally, according to the characteristics of armored vehicle system, common performance condition(CPC) in CREAM is improved.A reliability impact index is characterized by the overall contexts of tasks. Human reliability evaluation criterion of armored vehicle system is formulated. And the result of HRA is obtained based on the method presented in this paper. In addition, the relative weights are estimated by combining scale of 10/10—18/2 and analytical hierarchy process(AHP), and the triangular fuzzy number considering confidence factor and optimism index is adopted in order to reduce the subjectivity. The analysis results show that the method presented in this paper is reasonable and feasible. Meantime, the method can provide guidance for human reliability analysis of other weapon systems.
文摘The core of grid technology is just to solve the problem of resource share and to eliminate information island and resource island. Thus, it is a perfect approach to apply the grid technology to armored equipment materiel support. Firstly, the military and function demands of armored equipment materiel support grid are analyzed. Besides, according to the function demand, the system structure of armored equipment materiel support grid is designed. Finally, the organizational structure of armored equipment materiel support grid is established in this paper based on actual armored equipment materiel support.
基金funded by the National Natural Science Foundation of China(W.Zhang,Grant No.12220101002)Shaanxi Provincial Key Science and Technology Innovation Team(Y.Xu,Grant No.2023-CX-TD-14)+1 种基金the Young Talent Fund of Association for Science and Technology in Shaanxi,China(D.Jia,Grant No.20230240)the Chinese Studentship Council(D.Jia,Grant No.201908060224).
文摘The abalone shell,a composite material whose cross-section is composed of inorganic and organic layers,has high strength and toughness.Inspired by the abalone shell,several multi-layer composite plates with different layer sequences and thicknesses are studied as bullet-proof material in this paper.To investigate the ballistic performance of this multi-layer structure,the complete characterization model and related material parameters of large deformation,failure and fracture ofAl_(2)O_(3)ceramics andCarbon Fiber Reinforced Polymer(CFRP)are studied.Then,3D finite element models of the proposed composite plates with different layer sequences and thicknesses impacted by a 12.7 mm armor-piercing incendiary(API)are built using Abaqus to predict failure.The simulation results show that the CFRP/Al2O3 ceramic/Ultrahigh Molecular Weight Polyethylene(UHMWPE)/CFRP(1 mm/4 mm/4 mm/1 mm)composite is the optimized stack of layers.The simulation results under specified layer sequence and thickness have a reasonable correlation with the experimental results and reflect the failure and fracture of the multi-layer composite protective armor.
基金supported by the National Natural Science Foundation of China(Grant Nos.12172179,U2341244,and 11772160)。
文摘To enhance the protective performance of ceramic composite armor,ballistic penetration experiments were conducted on Al_(2)O_(3) ceramic-ultra-high molecular weight polyethylene(UHMWPE)composite armor with different thickness configurations.The damage and failure modes of hard projectiles and ceramic-fiber composite targets were analyzed.The recovered projectiles and ceramic fragments were sieved and weighed at multiple stages,revealing a positive correlation between the degree of fragmentation of the projectiles and ceramics and the overall ballistic resistance of the composite targets.Numerical simulations were performed using the LS-DYNA finite element software,and the simulation results showed high consistency with the experimental results,confirming the validity of the material parameters.The results indicate that the projectile heads primarily exhibited crushing and abrasive fragmentation.Larger projectile fragments mainly resulted from tensile and shear stress-induced failure.The failure modes of the composite targets included the formation of ceramic cones and radial cracks under high-velocity impacts.The UHMWPE laminated plates exhibited interlayer separation caused by tensile waves,permanent plastic deformation of the rear surface bulging,and perforation failure primarily due to shear forces.Through extended numerical simulations,while maintaining the same areal density and configuration of9 mm Al_(2)O_(3) ceramic+12 mm UHMWPE laminated composite armor,the thickness configurations of the Al_(2)O_(3) ceramic and UHMWPE laminated backplates were varied,and various thicknesses of UHMWPE laminates were simulated as the cover layer for the ceramic panels.The simulation results indicated that the composite armor configuration of 10 mm Al_(2)O_(3) ceramic+8 mm UHMWPE composite armor increased energy absorption by13.48%.When altering the cover layer thickness,a 4 mm UHMWPE+9 mm Al_(2)O_(3)+8 mm UHMWPE composite armor demonstrated a 27.11%improvement in energy absorption,showing a relatively significant enhancement.
文摘The Altomani&Sons Collection owns a remarkable newly discovered portrait of Guidobaldo II della Rovere,Duke of Urbino(1514-1574),a historical military figure who was a condottiere,ruler of Urbino,Commander-in-chief of the Papal Estate,and Perfect of Rome,as well as a collector and patron of the Fine Arts.Camilla Guerrieri Nati(1628-1694),a seventeenth-century Italian painter from Fossombrone(in the province of Pesaro and Urbino),portrayed this heroic personage surrounded by emblems associated with his military courage and leadership,including his plumed burgonet helmet,metal gilded armor,a necklace with the golden fleece,and batons of secular and religious dominions.This oil painting on copper-considered a precious metal at the time-emphasizes the importance of the commission.The material and technique also reveals a unique artistic achievement in that it provides the painting with a smooth,reflective surface and vibrant coloration,symbolizing precious imagery.
文摘This is a very timely review of body armour materials and systems since new test standards are currently being written, or reviewed, and new, innovative products released. Of greatest importance, however, is the recent evolution, and maturity, of the Ultra High Molecular Weight Polyethylene fibres enabling a completely new style of system to evolve e a stackable system of Hard Armour Plates. The science of body armour materials is quickly reviewed with emphasis upon current understanding of relevant energy-absorbing mechanisms in fibres, fabrics, polymeric laminates and ceramics. The trend in ongoing developments in ballistic fibres is then reviewed, analysed and future projections offered. Weaknesses in some of the ceramic grades are highlighted as is the value of using cladding materials to improve the robustness, and multi-strike performance, of Hard Armour Plates. Finally, with the drive for lighter, and therefore smaller, soft armour systems for military personnel the challenges for armour designers are reported, and the importance of the relative size of the Hard Armour Plate to the Soft Armour Insert is strongly emphasised.
基金This research is supported by the National Natural Science Foundation of China(No.U1730112).
文摘Chain damage is a new phenomenon that occurs when a reactive jet impacts and penetrates multispaced plates.The reactive jet produces mechanical perforations on the spaced plates by its kinetic energy(KE),and then results in unusual chain rupturing effects and excessive structural damage on the spaced plates by its deflagration reaction.In the present study,the chain damage behavior is initially demonstrated by experiments.The reactive liners,composed of 26 wt%Al and 74 wt%PTFE,are fabricated through a pressing and sintering process.Three reactive liner thicknesses of 0.08 CD,0.10 CD and 0.12 CD(charge diameter)are chosen to carry out the chain damage experiments.The results show a chain rupturing phenomenon caused by reactive jet.The constant reaction delay time and the different penetration velocities of reactive jets from liners with different thicknesses result in the variation of the deflagration position,which consequently determines the number of ruptured plates behind the armor.Then,the finite-element code AUTODYN-3D has been used to simulate the kinetic energy only-induced rupturing effects on plates,based on the mechanism of behind armor debris(BAD).The significant discrepancies between simulations and experiments indicate that one enhanced damage mechanism,the behind armor blast(BAB),has acted on the ruptured plates.Finally,a theoretical model is used to consider the BAB-induced enhancement,and the analysis shows that the rupturing area on aluminum plates depends strongly upon the KE only-induced pre-perforations,the mass of reactive materials,and the thickness of plates.