Aromatic carbon coated tin composites(A/Sn) have been prepared by thermal decomposition of the stannous 1,8-naphthalenedicarboxylate precursors,which is a reformative preparation method.Sugar carbon coated tin compo...Aromatic carbon coated tin composites(A/Sn) have been prepared by thermal decomposition of the stannous 1,8-naphthalenedicarboxylate precursors,which is a reformative preparation method.Sugar carbon coated tin composites(S/Sn) also are prepared as a contrast with the A/Sn composites.The morphology and composition of the products were characterized by Scanning Electricity Microscopy(SEM) and X-Ray Diffraction(XRD).Their electrochemical performance as anode materials for lithium ion batteries were investigated;the results indicated that these materials exhibited good performance,and the cycle stability of A/Sn composites is especially superior to the S/Sn composites due to its special carbon resource.展开更多
Superoxide ion O^-_2 is prepared in aprotic media by carbon gas-diffusion-electrode for the first time. The experimental results indicate that this electrode is superior to carbon plane-electrode in the reaction of O^...Superoxide ion O^-_2 is prepared in aprotic media by carbon gas-diffusion-electrode for the first time. The experimental results indicate that this electrode is superior to carbon plane-electrode in the reaction of O^-_2 with p-bromonitrobenzene. When the gas-diffussion-electrode is used, the yield of the product nitrophenol increases by 20%, and the selectivity of the reaction is nearly doubled as compared with the plane-electrode.展开更多
Dearomative carboxylation of aromatic compounds with carbon dioxide(CO_(2))could be utilized for the synthesis of cyclic carboxylative frameworks.The dearomative carboxylation exhibits advantages such as reconstitutio...Dearomative carboxylation of aromatic compounds with carbon dioxide(CO_(2))could be utilized for the synthesis of cyclic carboxylative frameworks.The dearomative carboxylation exhibits advantages such as reconstitution molecular spatial structure,environmental friendliness,mild conditions,high yield,and high selectivity,and is of significant importance in pharmaceutical synthesis and natural product chemistry.The recent advancements in the dearomative carboxylation of aromatics with CO_(2) are summarized,including elucidation of the reaction characteristics and the scope of substrates via transition-metal catalysis,photoredox catalysis,and electropromoted chemistry.展开更多
Atmospheric fine particles (PM2.5) were collected in this study with middle volume samplers in Fuzhou, China, during both normal days and haze days in summer (September 2007) and winter (january 2008). The conce...Atmospheric fine particles (PM2.5) were collected in this study with middle volume samplers in Fuzhou, China, during both normal days and haze days in summer (September 2007) and winter (january 2008). The concentrations, distributions, and sources of polycyclic aromatic hydrocarbons (PAHs), organic carbon (OC), elemental carbon (EC), and water soluble inorganic ions (WSIls) were determinated. The results showed that the concentrations of PM2.s, PAHs, OC, EC, and WSIIs were in the orders of haze 〉 normal and winter〉 summer. The dominant PAHs of PM2.s in Fuzhou were Fluo, Pyr, Chr, BbF, BkF, BaP, BghiP, and IcdP, which represented about 80.0% of the total PAHs during different sampling periods. The BaPeq concentrations of ^-~PAHs were 0.78, 0.99, 1.22, and 2.43 ng/m3 in summer normal, summer haze, winter normal, and winter haze, respectively. Secondary pollutants (SO42 , NO3 , NH4*, and OC) were the major chemical compositions of PM2.5, accounting for 69.0%, 55.1%, 63.4%, and 64.9% of PM2.s mass in summer normal, summer haze, winter normal, and winter haze, respectively. Correspondingly, secondary organic carbon (SOC) in Fuzhou accounted for 20.1%, 48.6%, 24.5%, and 50.5% of OC. The average values of nitrogen oxidation ratio (NOR) and sulfur oxidation ratio (SOR) were higher in haze days (0.08 and 0.27) than in normal days (0.05 and 0.22). Higher OC/EC ratios were also found in haze days (5.0) than in normal days (3.3). Correlation analysis demonstrated that visibility had positive correlations with wind speed, and neg- ative correlations with relative humidity and major air pollutants. Overall, the enrichments of PM2.5, OC, EC, SO42 ,andNO3 promoted haze formation. Furthermore, the diagnostic ratios of IcdP/(IcdP + BghiP), lcdP/BghiP, OC/EC, and NO3 /SO42 indicated that vehicle exhaust and coal consumption were the main sources of pollutants in Fuzhou.展开更多
The characteristics of the particles of the smoke that is emitted from the burning ofbiomass fuels were experimentally investigated using a laboratory-scale tube furnace and different types of biomass fuels: rubber w...The characteristics of the particles of the smoke that is emitted from the burning ofbiomass fuels were experimentally investigated using a laboratory-scale tube furnace and different types of biomass fuels: rubber wood, whole wood pellets and rice husks. Emitted amounts of particles, particle-bound polycyclic aromatic hydrocarbons (PAHs) and water-soluble organic carbon (WSOC) are discussed relative to the size of the emitted particles, ranging to as small as nano-size (〈70 nm), and to the rate of heating rate during combustion, differential thermal analysis (DTA) and thermogravimetric analysis (TG) techniques were used to examine the effect of heating rate and biomass type on combustion behaviors relative to the characteristics of particle emissions. In the present study, more than 30% of the smoke particles from the burning ofbiomass fuel had a mass that fell within a range of 〈 100 nm. Particles smaller than 0.43 μm contributed greatly to the total levels of toxic PAHs and WSOC. The properties of these particles were influenced by the fuel component, the combustion conditions, and the particle size. Although TC--DTA results indicated that the heating rate in a range of 10-20℃did not show a significant effect on the combustion properties, there was a slight increase in the decomposition temperature as heating rate was increased. The nano-size particles had the smallest fraction of particle mass and particle-bound PAHs, but nonetheless these particles registered the largest fraction of particle-bound WSOC.展开更多
Polycyclic aromatic hydrocarbons (PAHs) are complex organic compounds which are identified as significant carcinogenic to human health. PAHs (mainly in particle phase) are susceptible to atmospheric oxidant gases,...Polycyclic aromatic hydrocarbons (PAHs) are complex organic compounds which are identified as significant carcinogenic to human health. PAHs (mainly in particle phase) are susceptible to atmospheric oxidant gases, especially ozone, nitrogen oxides (NOx), hydroxyl radical (OH), and could be degraded on filters during sampling process, leading to an underestimation of ambient PAH concentrations. The goal of this work was to investigate particle associated PAHs sampling artifacts caused by ozone in summer of Beijing. Comparative sampling systems were operated simultaneously during the whole campaign, one with activated carbon ozone denuder, the other being set as conventional sampling system. Activated carbon denuder was testified to be highly efficient to eliminate ozone from air stream. In general, nine particle-bound PAHs observed from conventional sampler were all lower than those from ozone denuder system. The total PAHs (particle phase) concentration was averagely underestimated by 35.9% in conventional sampling procedure. Benzo[a]pyrene (BaP) had the highest percentage of mass loss. founded to have influences Ambient temperature was on PAHs sampling artifacts. High temperature can increase loss of particle associated PAHs during sampling.展开更多
基金Supported by the National Natural Science Foundation of China(20771087)
文摘Aromatic carbon coated tin composites(A/Sn) have been prepared by thermal decomposition of the stannous 1,8-naphthalenedicarboxylate precursors,which is a reformative preparation method.Sugar carbon coated tin composites(S/Sn) also are prepared as a contrast with the A/Sn composites.The morphology and composition of the products were characterized by Scanning Electricity Microscopy(SEM) and X-Ray Diffraction(XRD).Their electrochemical performance as anode materials for lithium ion batteries were investigated;the results indicated that these materials exhibited good performance,and the cycle stability of A/Sn composites is especially superior to the S/Sn composites due to its special carbon resource.
文摘Superoxide ion O^-_2 is prepared in aprotic media by carbon gas-diffusion-electrode for the first time. The experimental results indicate that this electrode is superior to carbon plane-electrode in the reaction of O^-_2 with p-bromonitrobenzene. When the gas-diffussion-electrode is used, the yield of the product nitrophenol increases by 20%, and the selectivity of the reaction is nearly doubled as compared with the plane-electrode.
文摘Dearomative carboxylation of aromatic compounds with carbon dioxide(CO_(2))could be utilized for the synthesis of cyclic carboxylative frameworks.The dearomative carboxylation exhibits advantages such as reconstitution molecular spatial structure,environmental friendliness,mild conditions,high yield,and high selectivity,and is of significant importance in pharmaceutical synthesis and natural product chemistry.The recent advancements in the dearomative carboxylation of aromatics with CO_(2) are summarized,including elucidation of the reaction characteristics and the scope of substrates via transition-metal catalysis,photoredox catalysis,and electropromoted chemistry.
基金financially supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Nos.KZCX2-YW-453,KZCX2-YW-JS404,and KZCX2-EW-408)the National Natural Science Foundation of China(No.41005082)the Commonweal Program of Environment Protection Department of China(No.201009004)
文摘Atmospheric fine particles (PM2.5) were collected in this study with middle volume samplers in Fuzhou, China, during both normal days and haze days in summer (September 2007) and winter (january 2008). The concentrations, distributions, and sources of polycyclic aromatic hydrocarbons (PAHs), organic carbon (OC), elemental carbon (EC), and water soluble inorganic ions (WSIls) were determinated. The results showed that the concentrations of PM2.s, PAHs, OC, EC, and WSIIs were in the orders of haze 〉 normal and winter〉 summer. The dominant PAHs of PM2.s in Fuzhou were Fluo, Pyr, Chr, BbF, BkF, BaP, BghiP, and IcdP, which represented about 80.0% of the total PAHs during different sampling periods. The BaPeq concentrations of ^-~PAHs were 0.78, 0.99, 1.22, and 2.43 ng/m3 in summer normal, summer haze, winter normal, and winter haze, respectively. Secondary pollutants (SO42 , NO3 , NH4*, and OC) were the major chemical compositions of PM2.5, accounting for 69.0%, 55.1%, 63.4%, and 64.9% of PM2.s mass in summer normal, summer haze, winter normal, and winter haze, respectively. Correspondingly, secondary organic carbon (SOC) in Fuzhou accounted for 20.1%, 48.6%, 24.5%, and 50.5% of OC. The average values of nitrogen oxidation ratio (NOR) and sulfur oxidation ratio (SOR) were higher in haze days (0.08 and 0.27) than in normal days (0.05 and 0.22). Higher OC/EC ratios were also found in haze days (5.0) than in normal days (3.3). Correlation analysis demonstrated that visibility had positive correlations with wind speed, and neg- ative correlations with relative humidity and major air pollutants. Overall, the enrichments of PM2.5, OC, EC, SO42 ,andNO3 promoted haze formation. Furthermore, the diagnostic ratios of IcdP/(IcdP + BghiP), lcdP/BghiP, OC/EC, and NO3 /SO42 indicated that vehicle exhaust and coal consumption were the main sources of pollutants in Fuzhou.
基金supported by KAKENHI (No.22710073) from the Japan Society for the Promotion of Science (JSPS)the JENESYS Program of the Japan Student Services Organization (JASSO)
文摘The characteristics of the particles of the smoke that is emitted from the burning ofbiomass fuels were experimentally investigated using a laboratory-scale tube furnace and different types of biomass fuels: rubber wood, whole wood pellets and rice husks. Emitted amounts of particles, particle-bound polycyclic aromatic hydrocarbons (PAHs) and water-soluble organic carbon (WSOC) are discussed relative to the size of the emitted particles, ranging to as small as nano-size (〈70 nm), and to the rate of heating rate during combustion, differential thermal analysis (DTA) and thermogravimetric analysis (TG) techniques were used to examine the effect of heating rate and biomass type on combustion behaviors relative to the characteristics of particle emissions. In the present study, more than 30% of the smoke particles from the burning ofbiomass fuel had a mass that fell within a range of 〈 100 nm. Particles smaller than 0.43 μm contributed greatly to the total levels of toxic PAHs and WSOC. The properties of these particles were influenced by the fuel component, the combustion conditions, and the particle size. Although TC--DTA results indicated that the heating rate in a range of 10-20℃did not show a significant effect on the combustion properties, there was a slight increase in the decomposition temperature as heating rate was increased. The nano-size particles had the smallest fraction of particle mass and particle-bound PAHs, but nonetheless these particles registered the largest fraction of particle-bound WSOC.
文摘Polycyclic aromatic hydrocarbons (PAHs) are complex organic compounds which are identified as significant carcinogenic to human health. PAHs (mainly in particle phase) are susceptible to atmospheric oxidant gases, especially ozone, nitrogen oxides (NOx), hydroxyl radical (OH), and could be degraded on filters during sampling process, leading to an underestimation of ambient PAH concentrations. The goal of this work was to investigate particle associated PAHs sampling artifacts caused by ozone in summer of Beijing. Comparative sampling systems were operated simultaneously during the whole campaign, one with activated carbon ozone denuder, the other being set as conventional sampling system. Activated carbon denuder was testified to be highly efficient to eliminate ozone from air stream. In general, nine particle-bound PAHs observed from conventional sampler were all lower than those from ozone denuder system. The total PAHs (particle phase) concentration was averagely underestimated by 35.9% in conventional sampling procedure. Benzo[a]pyrene (BaP) had the highest percentage of mass loss. founded to have influences Ambient temperature was on PAHs sampling artifacts. High temperature can increase loss of particle associated PAHs during sampling.