Fritillaria cirrhosa D.Don(Liliaceae)is an endangered perennial bulbous plant and its dry bulb is a valuable med-icinal material with antitussive and expectorant effects.Nevertheless,lack of resources and expensive pr...Fritillaria cirrhosa D.Don(Liliaceae)is an endangered perennial bulbous plant and its dry bulb is a valuable med-icinal material with antitussive and expectorant effects.Nevertheless,lack of resources and expensive prices make it difficult to meet clinical needs.This study presents a regeneration system aimed at overcoming the challenge of inadequate supply in F.cirrhosa,focusing on:(1)callus induction,(2)bulblets and adventitious bud induction,and(3)artificial seed production.Callus development was achieved in 84.93%on Murashige and Skoog(MS)medium fortified with 1.0 mg·L^(-1) picloram.The optimal medium for callus differentiation into regenerated bulb-lets was MS medium supplemented with 1.0 mg·L^(-1)6-benzyladenine(6-BA)and 0.2 mg·L^(-1)α-naphthaleneacetic acid(NAA).Subsequently,bulblets and adventitious buds were induced from regenerated bulblet sections cul-tured on MS medium fortified with 0.3 mg·L^(-1)6-BA+1.0 mg·L^(-1)2,4-dichlorophenoxyacetic acid(2,4-D),2.0 mg·L^(-1)6-BA+0.5 mg·L^(-1),and the induction rates were 88.17%and 84.24%,respectively.The regenerated bulblets were transplanted into a substrate of humus soil,river sand,and pearlite(1:1:1)after low-temperature treatment.The germination rate was 42.80%after culture for 30 days.Regenerated bulblets were used for encap-sulations in liquid MS medium containing 3%sucrose(w/v)+0.5 mg·L^(-1) NAA+2.0 mg·L^(-1)6-BA+3%sodium alginate(w/v)with a 10 min exposure to 2%CaCl_(2).Under non-aseptic conditions,the germination rate reached 81.67%,while the rooting rate was 20.56%after 45 days.The capsule added 1.0 g·L^(-1) carbendazim and 1.0 g·L^(-1) activated carbon was the best component of artificial seeds.This study successfully established an efficient regen-eration system for the rapid propagation of F.cirrhosa,involving in vitro bulblet regeneration and artificial seed production.This method introduces a novel approach for efficient breeding and germplasm preservation,making it suitable for large-scale industrial resource production.展开更多
Agriculture plays a crucial role in the economy,and there is an increasing global emphasis on automating agri-cultural processes.With the tremendous increase in population,the demand for food and employment has also i...Agriculture plays a crucial role in the economy,and there is an increasing global emphasis on automating agri-cultural processes.With the tremendous increase in population,the demand for food and employment has also increased significantly.Agricultural methods traditionally used to meet these requirements are no longer ade-quate,requiring solutions to issues such as excessive herbicide use and the use of chemical fertilizers.Integration of technologies such as the Internet of Things,wireless communication,machine learning,artificial intelligence(AI),and deep learning shows promise in addressing these challenges.However,there is a lack of comprehensive documentation on the application and potential of AI in improving agricultural input efficiency.To address this gap,a desk research approach was used by utilizing peer-reviewed electronic databases like PubMed,Scopus,Goo-gle Scholar,Web of Science,and Science Direct for relevant articles.Out of 327 initially identified articles,180 were deemed pertinent,focusing primarily on AI’s potential in enhancing yield through better management of nutrients,water,and weeds.Taking into account researchfindings worldwide,we found that AI technologies could assist farmers by providing recommendations on the optimal nutrients to enhance soil quality and deter-mine the best time for irrigation or herbicide application.The present status of AI-driven automation in agricul-ture holds significant promise for optimizing agricultural input utilization and reducing resource waste,particularly in the context of three pillars of crop management,i.e.,nutrient,irrigation,and weed management.展开更多
To make full use of plant shellfibers(rice husk,walnut shell,chestnut shell),three kinds of wood-plastic com-posites of plant shellfibers and polyvinyl chloride(PVC)were prepared.X-ray diffraction analysis was carried o...To make full use of plant shellfibers(rice husk,walnut shell,chestnut shell),three kinds of wood-plastic com-posites of plant shellfibers and polyvinyl chloride(PVC)were prepared.X-ray diffraction analysis was carried out on three kinds of plant shellfibers to test their crystallinity.The aging process of the composites was conducted under 2 different conditions.One was artificial seawater immersion and xenon lamp irradiation,and the other one was deionized water spray and xenon lamp irradiation.The mechanical properties(tensile strength,flexural strength,impact strength),changes in color,water absorption,Fourier transform infrared spectroscopy(FTIR),and microstructures of the composites before and after the two aging experiments were analyzed.The results showed that the chestnut shell had the highest crystallinity,which was 42%.The chestnut shell/PVC composites had the strongest interface bonding,the least internal defects,and the best general mechanical properties among the three composites.Its tensile strength,bending strength and impact strength were 23.81 MPa,34.12 MPa,and 4.32 KJ·m^(-2),respectively.Comparing the two aging conditions,artificial seawater immersion and xenon lamp irradiation destroyed the quality of the combination of plant shellfibers and PVC,making the internal defects of the composites increase.This made the water absorption ability and changes in the color of the composites more obvious and led to a great decrease in the mechanical properties.The general mechanical properties of the chestnut shell/PVC composites were the best,but their water absorption ability changed more obviously.展开更多
1故障现象Siemens Artis Zee系列数字减影血管造影系统(digital subtraction angiography,DSA)在使用过程中,不能进行摄影采集,只能进行X线透视。同时,检查室内参考图像显示屏底侧区域的信息栏显示“Bypass”,控制室内实时图像显示屏右...1故障现象Siemens Artis Zee系列数字减影血管造影系统(digital subtraction angiography,DSA)在使用过程中,不能进行摄影采集,只能进行X线透视。同时,检查室内参考图像显示屏底侧区域的信息栏显示“Bypass”,控制室内实时图像显示屏右侧区域的各个曝光参数变灰,且不能被修改。展开更多
A deep-learning-based framework is proposed to predict the impedance response and underlying electrochemical behavior of the reversible protonic ceramic cell(PCC) across a wide variety of different operating condition...A deep-learning-based framework is proposed to predict the impedance response and underlying electrochemical behavior of the reversible protonic ceramic cell(PCC) across a wide variety of different operating conditions.Electrochemical impedance spectra(EIS) of PCCs were first acquired under a variety of opera ting conditions to provide a dataset containing 36 sets of EIS spectra for the model.An artificial neural network(ANN) was then trained to model the relationship between the cell operating condition and EIS response.Finally,ANN model-predicted EIS spectra were analyzed by the distribution of relaxation times(DRT) and compared to DRT spectra obtained from the experimental EIS data,enabling an assessment of the accumulative errors from the predicted EIS data vs the predicted DRT.We show that in certain cases,although the R^(2)of the predicted EIS curve may be> 0.98,the R^(2)of the predicted DRT may be as low as~0.3.This can lead to an inaccurate ANN prediction of the underlying time-resolved electrochemical response,although the apparent accuracy as evaluated from the EIS prediction may seem acceptable.After adjustment of the parameters of the ANN framework,the average R^(2)of the DRTs derived from the predicted EIS can be improved to 0.9667.Thus,we demonstrate that a properly tuned ANN model can be used as an effective tool to predict not only the EIS,but also the DRT of complex electrochemical systems.展开更多
Human Activity Recognition(HAR)has been made simple in recent years,thanks to recent advancements made in Artificial Intelligence(AI)techni-ques.These techniques are applied in several areas like security,surveillance,...Human Activity Recognition(HAR)has been made simple in recent years,thanks to recent advancements made in Artificial Intelligence(AI)techni-ques.These techniques are applied in several areas like security,surveillance,healthcare,human-robot interaction,and entertainment.Since wearable sensor-based HAR system includes in-built sensors,human activities can be categorized based on sensor values.Further,it can also be employed in other applications such as gait diagnosis,observation of children/adult’s cognitive nature,stroke-patient hospital direction,Epilepsy and Parkinson’s disease examination,etc.Recently-developed Artificial Intelligence(AI)techniques,especially Deep Learning(DL)models can be deployed to accomplish effective outcomes on HAR process.With this motivation,the current research paper focuses on designing Intelligent Hyperparameter Tuned Deep Learning-based HAR(IHPTDL-HAR)technique in healthcare environment.The proposed IHPTDL-HAR technique aims at recogniz-ing the human actions in healthcare environment and helps the patients in mana-ging their healthcare service.In addition,the presented model makes use of Hierarchical Clustering(HC)-based outlier detection technique to remove the out-liers.IHPTDL-HAR technique incorporates DL-based Deep Belief Network(DBN)model to recognize the activities of users.Moreover,Harris Hawks Opti-mization(HHO)algorithm is used for hyperparameter tuning of DBN model.Finally,a comprehensive experimental analysis was conducted upon benchmark dataset and the results were examined under different aspects.The experimental results demonstrate that the proposed IHPTDL-HAR technique is a superior per-former compared to other recent techniques under different measures.展开更多
基金funded by the National Key Research and Development Program of China(2018YFC1706101)the Science and Technology Program of Sichuan Province,China(2021YFS0045).
文摘Fritillaria cirrhosa D.Don(Liliaceae)is an endangered perennial bulbous plant and its dry bulb is a valuable med-icinal material with antitussive and expectorant effects.Nevertheless,lack of resources and expensive prices make it difficult to meet clinical needs.This study presents a regeneration system aimed at overcoming the challenge of inadequate supply in F.cirrhosa,focusing on:(1)callus induction,(2)bulblets and adventitious bud induction,and(3)artificial seed production.Callus development was achieved in 84.93%on Murashige and Skoog(MS)medium fortified with 1.0 mg·L^(-1) picloram.The optimal medium for callus differentiation into regenerated bulb-lets was MS medium supplemented with 1.0 mg·L^(-1)6-benzyladenine(6-BA)and 0.2 mg·L^(-1)α-naphthaleneacetic acid(NAA).Subsequently,bulblets and adventitious buds were induced from regenerated bulblet sections cul-tured on MS medium fortified with 0.3 mg·L^(-1)6-BA+1.0 mg·L^(-1)2,4-dichlorophenoxyacetic acid(2,4-D),2.0 mg·L^(-1)6-BA+0.5 mg·L^(-1),and the induction rates were 88.17%and 84.24%,respectively.The regenerated bulblets were transplanted into a substrate of humus soil,river sand,and pearlite(1:1:1)after low-temperature treatment.The germination rate was 42.80%after culture for 30 days.Regenerated bulblets were used for encap-sulations in liquid MS medium containing 3%sucrose(w/v)+0.5 mg·L^(-1) NAA+2.0 mg·L^(-1)6-BA+3%sodium alginate(w/v)with a 10 min exposure to 2%CaCl_(2).Under non-aseptic conditions,the germination rate reached 81.67%,while the rooting rate was 20.56%after 45 days.The capsule added 1.0 g·L^(-1) carbendazim and 1.0 g·L^(-1) activated carbon was the best component of artificial seeds.This study successfully established an efficient regen-eration system for the rapid propagation of F.cirrhosa,involving in vitro bulblet regeneration and artificial seed production.This method introduces a novel approach for efficient breeding and germplasm preservation,making it suitable for large-scale industrial resource production.
文摘Agriculture plays a crucial role in the economy,and there is an increasing global emphasis on automating agri-cultural processes.With the tremendous increase in population,the demand for food and employment has also increased significantly.Agricultural methods traditionally used to meet these requirements are no longer ade-quate,requiring solutions to issues such as excessive herbicide use and the use of chemical fertilizers.Integration of technologies such as the Internet of Things,wireless communication,machine learning,artificial intelligence(AI),and deep learning shows promise in addressing these challenges.However,there is a lack of comprehensive documentation on the application and potential of AI in improving agricultural input efficiency.To address this gap,a desk research approach was used by utilizing peer-reviewed electronic databases like PubMed,Scopus,Goo-gle Scholar,Web of Science,and Science Direct for relevant articles.Out of 327 initially identified articles,180 were deemed pertinent,focusing primarily on AI’s potential in enhancing yield through better management of nutrients,water,and weeds.Taking into account researchfindings worldwide,we found that AI technologies could assist farmers by providing recommendations on the optimal nutrients to enhance soil quality and deter-mine the best time for irrigation or herbicide application.The present status of AI-driven automation in agricul-ture holds significant promise for optimizing agricultural input utilization and reducing resource waste,particularly in the context of three pillars of crop management,i.e.,nutrient,irrigation,and weed management.
基金This study was supported by the financial support of Natural Science Research Projects in Higher Education Institutions in Jiangsu Province(No.18KJD430002).
文摘To make full use of plant shellfibers(rice husk,walnut shell,chestnut shell),three kinds of wood-plastic com-posites of plant shellfibers and polyvinyl chloride(PVC)were prepared.X-ray diffraction analysis was carried out on three kinds of plant shellfibers to test their crystallinity.The aging process of the composites was conducted under 2 different conditions.One was artificial seawater immersion and xenon lamp irradiation,and the other one was deionized water spray and xenon lamp irradiation.The mechanical properties(tensile strength,flexural strength,impact strength),changes in color,water absorption,Fourier transform infrared spectroscopy(FTIR),and microstructures of the composites before and after the two aging experiments were analyzed.The results showed that the chestnut shell had the highest crystallinity,which was 42%.The chestnut shell/PVC composites had the strongest interface bonding,the least internal defects,and the best general mechanical properties among the three composites.Its tensile strength,bending strength and impact strength were 23.81 MPa,34.12 MPa,and 4.32 KJ·m^(-2),respectively.Comparing the two aging conditions,artificial seawater immersion and xenon lamp irradiation destroyed the quality of the combination of plant shellfibers and PVC,making the internal defects of the composites increase.This made the water absorption ability and changes in the color of the composites more obvious and led to a great decrease in the mechanical properties.The general mechanical properties of the chestnut shell/PVC composites were the best,but their water absorption ability changed more obviously.
文摘1故障现象Siemens Artis Zee系列数字减影血管造影系统(digital subtraction angiography,DSA)在使用过程中,不能进行摄影采集,只能进行X线透视。同时,检查室内参考图像显示屏底侧区域的信息栏显示“Bypass”,控制室内实时图像显示屏右侧区域的各个曝光参数变灰,且不能被修改。
基金funding from the National Natural Science Foundation of China,China(12172104,52102226)the Shenzhen Science and Technology Innovation Commission,China(JCYJ20200109113439837)the Stable Supporting Fund of Shenzhen,China(GXWD2020123015542700320200728114835006)。
文摘A deep-learning-based framework is proposed to predict the impedance response and underlying electrochemical behavior of the reversible protonic ceramic cell(PCC) across a wide variety of different operating conditions.Electrochemical impedance spectra(EIS) of PCCs were first acquired under a variety of opera ting conditions to provide a dataset containing 36 sets of EIS spectra for the model.An artificial neural network(ANN) was then trained to model the relationship between the cell operating condition and EIS response.Finally,ANN model-predicted EIS spectra were analyzed by the distribution of relaxation times(DRT) and compared to DRT spectra obtained from the experimental EIS data,enabling an assessment of the accumulative errors from the predicted EIS data vs the predicted DRT.We show that in certain cases,although the R^(2)of the predicted EIS curve may be> 0.98,the R^(2)of the predicted DRT may be as low as~0.3.This can lead to an inaccurate ANN prediction of the underlying time-resolved electrochemical response,although the apparent accuracy as evaluated from the EIS prediction may seem acceptable.After adjustment of the parameters of the ANN framework,the average R^(2)of the DRTs derived from the predicted EIS can be improved to 0.9667.Thus,we demonstrate that a properly tuned ANN model can be used as an effective tool to predict not only the EIS,but also the DRT of complex electrochemical systems.
基金supported by Korea Institute for Advancement of Technology(KIAT)grant fundedthe Korea Government(MOTIE)(P0012724,The Competency Development Program for Industry Specialist)the Soonchunhyang University Research Fund.
文摘Human Activity Recognition(HAR)has been made simple in recent years,thanks to recent advancements made in Artificial Intelligence(AI)techni-ques.These techniques are applied in several areas like security,surveillance,healthcare,human-robot interaction,and entertainment.Since wearable sensor-based HAR system includes in-built sensors,human activities can be categorized based on sensor values.Further,it can also be employed in other applications such as gait diagnosis,observation of children/adult’s cognitive nature,stroke-patient hospital direction,Epilepsy and Parkinson’s disease examination,etc.Recently-developed Artificial Intelligence(AI)techniques,especially Deep Learning(DL)models can be deployed to accomplish effective outcomes on HAR process.With this motivation,the current research paper focuses on designing Intelligent Hyperparameter Tuned Deep Learning-based HAR(IHPTDL-HAR)technique in healthcare environment.The proposed IHPTDL-HAR technique aims at recogniz-ing the human actions in healthcare environment and helps the patients in mana-ging their healthcare service.In addition,the presented model makes use of Hierarchical Clustering(HC)-based outlier detection technique to remove the out-liers.IHPTDL-HAR technique incorporates DL-based Deep Belief Network(DBN)model to recognize the activities of users.Moreover,Harris Hawks Opti-mization(HHO)algorithm is used for hyperparameter tuning of DBN model.Finally,a comprehensive experimental analysis was conducted upon benchmark dataset and the results were examined under different aspects.The experimental results demonstrate that the proposed IHPTDL-HAR technique is a superior per-former compared to other recent techniques under different measures.