为了提高人工鱼群算法AFSA(artificial fish swarm algorithm)的全局搜索能力及加快其收敛速度,提出一种将其与免疫算法IA(immune algorithm)进行结合的新方法,形成了免疫人工鱼群算法IAFSA(immuneartificial fish swarm algorithm),并...为了提高人工鱼群算法AFSA(artificial fish swarm algorithm)的全局搜索能力及加快其收敛速度,提出一种将其与免疫算法IA(immune algorithm)进行结合的新方法,形成了免疫人工鱼群算法IAFSA(immuneartificial fish swarm algorithm),并且利用该算法自动选取径向基函数RBF(radial basis function)神经网络中的输入变量,以及对网络中隐含层到输出层之间的权值进行训练,从而减少了RBF神经网络的工作量,提高了训练速度。用优化后的RBF神经网络进行短期负荷预测,结果表明,该方法具有较高的预测精度。展开更多
特征选择是网络入侵检测研究中的核心问题,为了提高网络入侵检测率,提出一种人工鱼群算法(AFSA)和支持向量机(SVM)相融合的网络入侵检测模型(AFSA-SVM)。将网络特征子集编码成人工鱼的位置,以5折交叉验证SVM训练模型检测率作为特征子集...特征选择是网络入侵检测研究中的核心问题,为了提高网络入侵检测率,提出一种人工鱼群算法(AFSA)和支持向量机(SVM)相融合的网络入侵检测模型(AFSA-SVM)。将网络特征子集编码成人工鱼的位置,以5折交叉验证SVM训练模型检测率作为特征子集优劣的评价标准,通过模拟鱼群的觅食、聚群及追尾行为找到最优特征子集,SVM根据最优特征子集进行网络入侵检测,并采用KDD CUP 99数据集进行仿真测试。仿真结果表明,相对于粒子群优化算法、遗传算法和原始特征法,AFSA-SVM提高了入侵检测效率和检测率,是一种有效的网络入侵检测模型。展开更多
由于工程中的复杂系统常常具有非线性的特点,因此寻找满足系统要求的最低成本成了复杂系统设计的难点。针对这一问题,文章对常规的人工鱼群算法(artificial fish school algorithm,AFSA)进行了双空间自适应嵌套式的改进,探讨了改进后的A...由于工程中的复杂系统常常具有非线性的特点,因此寻找满足系统要求的最低成本成了复杂系统设计的难点。针对这一问题,文章对常规的人工鱼群算法(artificial fish school algorithm,AFSA)进行了双空间自适应嵌套式的改进,探讨了改进后的AFSA算法在复杂系统寻优中的可行性,并对3个测试的复杂系统进行了分析计算;结果表明,与原算法相比,改进后的算法在提升寻优精确度与收敛速度方面有很好的效果。展开更多
为减小龙门起重机运行过程中负载的摆角,在MATLAB/Simulink软件中建立PID控制模型,利用人工鱼群算法(Artificial Fish Swarm Algorithm,AFSA)优化模型参数,通过仿真分析,该模型显著减小了龙门起重机负载摆角,实现了龙门起重机快速精准定...为减小龙门起重机运行过程中负载的摆角,在MATLAB/Simulink软件中建立PID控制模型,利用人工鱼群算法(Artificial Fish Swarm Algorithm,AFSA)优化模型参数,通过仿真分析,该模型显著减小了龙门起重机负载摆角,实现了龙门起重机快速精准定位,鲁棒性好。结果表明人工鱼群算法与PID控制器结合的方法具有可行性和有效性。展开更多
In this paper, a static weapon target assignment(WTA)problem is studied. As a critical problem in cooperative air combat,outcome of WTA directly influences the battle. Along with the cost of weapons rising rapidly, ...In this paper, a static weapon target assignment(WTA)problem is studied. As a critical problem in cooperative air combat,outcome of WTA directly influences the battle. Along with the cost of weapons rising rapidly, it is indispensable to design a target assignment model that can ensure minimizing targets survivability and weapons consumption simultaneously. Afterwards an algorithm named as improved artificial fish swarm algorithm-improved harmony search algorithm(IAFSA-IHS) is proposed to solve the problem. The effect of the proposed algorithm is demonstrated in numerical simulations, and results show that it performs positively in searching the optimal solution and solving the WTA problem.展开更多
文摘为了提高人工鱼群算法AFSA(artificial fish swarm algorithm)的全局搜索能力及加快其收敛速度,提出一种将其与免疫算法IA(immune algorithm)进行结合的新方法,形成了免疫人工鱼群算法IAFSA(immuneartificial fish swarm algorithm),并且利用该算法自动选取径向基函数RBF(radial basis function)神经网络中的输入变量,以及对网络中隐含层到输出层之间的权值进行训练,从而减少了RBF神经网络的工作量,提高了训练速度。用优化后的RBF神经网络进行短期负荷预测,结果表明,该方法具有较高的预测精度。
文摘特征选择是网络入侵检测研究中的核心问题,为了提高网络入侵检测率,提出一种人工鱼群算法(AFSA)和支持向量机(SVM)相融合的网络入侵检测模型(AFSA-SVM)。将网络特征子集编码成人工鱼的位置,以5折交叉验证SVM训练模型检测率作为特征子集优劣的评价标准,通过模拟鱼群的觅食、聚群及追尾行为找到最优特征子集,SVM根据最优特征子集进行网络入侵检测,并采用KDD CUP 99数据集进行仿真测试。仿真结果表明,相对于粒子群优化算法、遗传算法和原始特征法,AFSA-SVM提高了入侵检测效率和检测率,是一种有效的网络入侵检测模型。
文摘由于工程中的复杂系统常常具有非线性的特点,因此寻找满足系统要求的最低成本成了复杂系统设计的难点。针对这一问题,文章对常规的人工鱼群算法(artificial fish school algorithm,AFSA)进行了双空间自适应嵌套式的改进,探讨了改进后的AFSA算法在复杂系统寻优中的可行性,并对3个测试的复杂系统进行了分析计算;结果表明,与原算法相比,改进后的算法在提升寻优精确度与收敛速度方面有很好的效果。
文摘为减小龙门起重机运行过程中负载的摆角,在MATLAB/Simulink软件中建立PID控制模型,利用人工鱼群算法(Artificial Fish Swarm Algorithm,AFSA)优化模型参数,通过仿真分析,该模型显著减小了龙门起重机负载摆角,实现了龙门起重机快速精准定位,鲁棒性好。结果表明人工鱼群算法与PID控制器结合的方法具有可行性和有效性。
基金supported by the National Natural Science Foundation of China(61472441)
文摘In this paper, a static weapon target assignment(WTA)problem is studied. As a critical problem in cooperative air combat,outcome of WTA directly influences the battle. Along with the cost of weapons rising rapidly, it is indispensable to design a target assignment model that can ensure minimizing targets survivability and weapons consumption simultaneously. Afterwards an algorithm named as improved artificial fish swarm algorithm-improved harmony search algorithm(IAFSA-IHS) is proposed to solve the problem. The effect of the proposed algorithm is demonstrated in numerical simulations, and results show that it performs positively in searching the optimal solution and solving the WTA problem.