期刊文献+
共找到1,343篇文章
< 1 2 68 >
每页显示 20 50 100
An Efficient and Robust Fall Detection System Using Wireless Gait Analysis Sensor with Artificial Neural Network (ANN) and Support Vector Machine (SVM) Algorithms 被引量:2
1
作者 Bhargava Teja Nukala Naohiro Shibuya +5 位作者 Amanda Rodriguez Jerry Tsay Jerry Lopez Tam Nguyen Steven Zupancic Donald Yu-Chun Lie 《Open Journal of Applied Biosensor》 2014年第4期29-39,共11页
In this work, a total of 322 tests were taken on young volunteers by performing 10 different falls, 6 different Activities of Daily Living (ADL) and 7 Dynamic Gait Index (DGI) tests using a custom-designed Wireless Ga... In this work, a total of 322 tests were taken on young volunteers by performing 10 different falls, 6 different Activities of Daily Living (ADL) and 7 Dynamic Gait Index (DGI) tests using a custom-designed Wireless Gait Analysis Sensor (WGAS). In order to perform automatic fall detection, we used Back Propagation Artificial Neural Network (BP-ANN) and Support Vector Machine (SVM) based on the 6 features extracted from the raw data. The WGAS, which includes a tri-axial accelerometer, 2 gyroscopes, and a MSP430 microcontroller, is worn by the subjects at either T4 (at back) or as a belt-clip in front of the waist during the various tests. The raw data is wirelessly transmitted from the WGAS to a near-by PC for real-time fall classification. The BP ANN is optimized by varying the training, testing and validation data sets and training the network with different learning schemes. SVM is optimized by using three different kernels and selecting the kernel for best classification rate. The overall accuracy of BP ANN is obtained as 98.20% with LM and RPROP training from the T4 data, while from the data taken at the belt, we achieved 98.70% with LM and SCG learning. The overall accuracy using SVM was 98.80% and 98.71% with RBF kernel from the T4 and belt position data, respectively. 展开更多
关键词 artificial Neural Network (ann) Back Propagation FALL Detection FALL Prevention GAIT Analysis SENSOR Support Vector Machine (SVM) WIRELESS SENSOR
下载PDF
Simultaneous Identification of Thermophysical Properties of Semitransparent Media Using a Hybrid Model Based on Artificial Neural Network and Evolutionary Algorithm
2
作者 LIU Yang HU Shaochuang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第4期458-475,共18页
A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductiv... A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductivity and effective absorption coefficient of semitransparent materials.For the direct model,the spherical harmonic method and the finite volume method are used to solve the coupled conduction-radiation heat transfer problem in an absorbing,emitting,and non-scattering 2D axisymmetric gray medium in the background of laser flash method.For the identification part,firstly,the temperature field and the incident radiation field in different positions are chosen as observables.Then,a traditional identification model based on PSO algorithm is established.Finally,multilayer ANNs are built to fit and replace the direct model in the traditional identification model to speed up the identification process.The results show that compared with the traditional identification model,the time cost of the hybrid identification model is reduced by about 1 000 times.Besides,the hybrid identification model remains a high level of accuracy even with measurement errors. 展开更多
关键词 semitransparent medium coupled conduction-radiation heat transfer thermophysical properties simultaneous identification multilayer artificial neural networks(anns) evolutionary algorithm hybrid identification model
下载PDF
Application of Random Search Methods in the Determination of Learning Rate for Training Container Dwell Time Data Using Artificial Neural Networks
3
作者 Justice Awosonviri Akodia Clement K. Dzidonu +1 位作者 David King Boison Philip Kisembe 《Intelligent Control and Automation》 2024年第4期109-124,共16页
Purpose: This study aimed to enhance the prediction of container dwell time, a crucial factor for optimizing port operations, resource allocation, and supply chain efficiency. Determining an optimal learning rate for ... Purpose: This study aimed to enhance the prediction of container dwell time, a crucial factor for optimizing port operations, resource allocation, and supply chain efficiency. Determining an optimal learning rate for training Artificial Neural Networks (ANNs) has remained a challenging task due to the diverse sizes, complexity, and types of data involved. Design/Method/Approach: This research used a RandomizedSearchCV algorithm, a random search approach, to bridge this knowledge gap. The algorithm was applied to container dwell time data from the TOS system of the Port of Tema, which included 307,594 container records from 2014 to 2022. Findings: The RandomizedSearchCV method outperformed standard training methods both in terms of reducing training time and improving prediction accuracy, highlighting the significant role of the constant learning rate as a hyperparameter. Research Limitations and Implications: Although the study provides promising outcomes, the results are limited to the data extracted from the Port of Tema and may differ in other contexts. Further research is needed to generalize these findings across various port systems. Originality/Value: This research underscores the potential of RandomizedSearchCV as a valuable tool for optimizing ANN training in container dwell time prediction. It also accentuates the significance of automated learning rate selection, offering novel insights into the optimization of container dwell time prediction, with implications for improving port efficiency and supply chain operations. 展开更多
关键词 Container Dwell Time Prediction artificial Neural Networks (anns) Learning Rate Optimization RandomizedSearchCV Algorithm and Port Operations Efficiency
下载PDF
Optimization of the Conceptual Model of Green-Ampt Using Artificial Neural Network Model (ANN) and WMS to Estimate Infiltration Rate of Soil (Case Study: Kakasharaf Watershed, Khorram Abad, Iran)
4
作者 Ali Haghizadeh Leila Soleimani Hossein Zeinivand 《Journal of Water Resource and Protection》 2014年第5期473-480,共8页
Determination of the infiltration rate in a watershed is not easy and in empirical and theoretical point of view, it is important to access average value of infiltration. Infiltration models has main role in managing ... Determination of the infiltration rate in a watershed is not easy and in empirical and theoretical point of view, it is important to access average value of infiltration. Infiltration models has main role in managing water sources. Therefore different types of models with various degrees of complexity were developed to reach this aim. Most of the estimating methods of soil infiltration are expensive and time consuming and these methods estimate infiltration with hypothesis of zero slope. One of the conceptual and physical models for estimating soil infiltration is Green-Ampt model which is similar to Richard model. This model uses slope factor in estimating infiltration and this is the power point of Green-Ampt model. In this research the empirical model of Green-Ampt was optimized with integrating artificial neural network model (ANN) and a model of geographical information system WMS to estimate the infiltration in Kakasharaf watershed. Results of the comparison between the output of this method and real value of infiltration in region (through multiple cylinders) showed that this method can estimate the infiltration rate of Kakasharaf watershed with low error and acceptable accuracy (Nash-Sutcliff performance coefficient 0.821, square error 0.216, correlation coefficient 0.905 and model error 0.024). 展开更多
关键词 INFILTRATION Green-Ampt Empirical MODEL WMS MODEL artificial Neural Network MODEL (ann)
下载PDF
Predicting pollutant removal in constructed wetlands using artificial neural networks(ANNs)
5
作者 Christopher Kiiza Shun-qi Pan +1 位作者 Bettina Bockelmann-Evans Akintunde Babatunde 《Water Science and Engineering》 EI CAS CSCD 2020年第1期14-23,共10页
Growth in urban population,urbanisation,and economic development has increased the demand for water,especially in water-scarce regions.Therefore,sustainable approaches to water management are needed to cope with the e... Growth in urban population,urbanisation,and economic development has increased the demand for water,especially in water-scarce regions.Therefore,sustainable approaches to water management are needed to cope with the effects of the urbanisation on the water environment.This study aimed to design novel configurations of tidal-flow vertical subsurface flow constructed wetlands(VFCWs)for treating urban stormwater.A series of laboratory experiments were conducted with semi-synthetic influent stormwater to examine the effects of the design and operation variables on the performance of the VFCWs and to identify optimal design and operational strategies,as well as maintenance requirements.The results show that the VFCWs can significantly reduce pollutants in urban stormwater,and that pollutant removal was related to specific VFCW designs.Models based on the artificial neural network(ANN)method were built using inputs derived from data exploratory techniques,such as analysis of variance(ANOVA)and principal component analysis(PCA).It was found that PCA reduced the dimensionality of input variables obtained from different experimental design conditions.The results show a satisfactory generalisation for predicting nitrogen and phosphorus removal with fewer variable inputs,indicating that monitoring costs and time can be reduced. 展开更多
关键词 CONSTRUCTED WETLANDS Urban STORMWATER POLLUTANT removal artificial neural networks(anns) Principal component analysis(PCA)
下载PDF
基于ANN和XGB算法的锈蚀钢筋混凝土高温粘结强度预测方法
6
作者 刘廷滨 黄滔 +3 位作者 欧嘉祥 李云霞 艾岩 任正熹 《工程力学》 EI CSCD 北大核心 2024年第S01期300-309,共10页
为准确评估锈蚀钢筋混凝土(CRC)结构在突发火灾下的结构承载力,锈蚀钢筋混凝土高温粘结强度的统一预测方法研究亟待开展。然而,粘结退化机理复杂,粘结因素众多,实验方法不能考虑所有粘结因素的相关复杂关系的影响。在现有大量试验数据... 为准确评估锈蚀钢筋混凝土(CRC)结构在突发火灾下的结构承载力,锈蚀钢筋混凝土高温粘结强度的统一预测方法研究亟待开展。然而,粘结退化机理复杂,粘结因素众多,实验方法不能考虑所有粘结因素的相关复杂关系的影响。在现有大量试验数据的基础上,采用机器学习方法可以有效地通过数据建立输入和输出特征之间的回归关系。该文利用ANN和XGB两种机器学习算法建立了一个统一的锈蚀钢筋混凝土高温粘结强度预测模型。基于612组高温锈蚀钢筋混凝土的试验研究数据,进行模型训练和测试。结果表明:ML模型的预测结果与实验结果十分吻合。此外,针对机器学习算法本身存在的黑盒子问题,使用SHAP方法来解决锈蚀钢筋混凝土高温粘结强度预测过程中的模型可解释性问题。同时,还将ML模型的计算结果与三种理论计算公式的结果进行了比较,结果表明:ML模型具有明显的优势。新构建的混合机器学习模型很有可能成为准确评估CRC结构经受高温后的损伤程度问题的新选择。 展开更多
关键词 人工神经网络(ann) 极端梯度提升树(XGB) 锈蚀钢筋混凝土 高温粘结强度 SHAP方法
下载PDF
EFFECT OF COLD WORKING ON THE AGING PROPERTIES OF Cu-Cr-Zr-Mg ALLOY BY ARTIFICIAL NEURAL NETWORK 被引量:10
7
作者 J.H.Su H.J.Li +3 位作者 Q.M.Dong P.Liu B.X.Kang B.H.Tian 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2004年第5期741-746,共6页
A developmental research has been carried out to deal with the high performance of Cu-Cr-Zr-Mg lead frame alloy by artificial neural network (ANN). Using the cold working to assist in the aging hardening can improve t... A developmental research has been carried out to deal with the high performance of Cu-Cr-Zr-Mg lead frame alloy by artificial neural network (ANN). Using the cold working to assist in the aging hardening can improve the the hardness and electrical conductivity properties of Cu-Cr-Zr-Mg lead frame alloy. This paper studies the effect of different extent of cold working on the aging properties by a supervised ANN to model the non-linear relationship between processing parameters and the properties. The back-propagation (BP) training algorithm is improved by Levenberg-Marquardt algorithm. A basic repository on the domain knowledge of cold worked aging processes is established via sufficient data mining by the network. The predicted values of the ANN coincide well with the tested data. So an important foundation has been laid for prediction and optimum controlling the rolling and aging properties of Cu-Cr-Zr-Mg alloy. 展开更多
关键词 Cu-Cr-Zr-Mg alloy cold working AGING artificial neural network (ann)
下载PDF
A robust behavior of Feed Forward Back propagation algorithm of Artificial Neural Networks in the application of vertical electrical sounding data inversion 被引量:9
8
作者 Y.Srinivas A.Stanley Raj +2 位作者 D.Hudson Oliver D.Muthuraj N.Chandrasekar 《Geoscience Frontiers》 SCIE CAS 2012年第5期729-736,共8页
The applications of intelligent techniques have increased exponentially in recent days to study most of the non-linear parameters. In particular, the behavior of earth resembles the non- linearity applications. An eff... The applications of intelligent techniques have increased exponentially in recent days to study most of the non-linear parameters. In particular, the behavior of earth resembles the non- linearity applications. An efficient tool is needed for the interpretation of geophysical parameters to study the subsurface of the earth. Artificial Neural Networks (ANN) perform certain tasks if the structure of the network is modified accordingly for the purpose it has been used. The three most robust networks were taken and comparatively analyzed for their performance to choose the appropriate network. The single- layer feed-forward neural network with the back propagation algorithm is chosen as one of the well- suited networks after comparing the results. Initially, certain synthetic data sets of all three-layer curves have been taken tk^r training the network, and the network is validated by the field datasets collected from Tuticorin Coastal Region (78°7'30"E and 8°48'45"N), Tamil Nadu, India. The interpretation has been done successfully using the corresponding learning algorithm in the present study. With proper training of back propagation networks, it tends to give the resistivity and thickness of the subsurface layer model of the field resistivity data concerning the synthetic data trained earlier in the appropriate network. The network is trained with more Vertical Electrical Sounding (VES) data, and this trained network is demon- strated by the field data. Groundwater table depth also has been modeled. 展开更多
关键词 artificial neural networks(ann Resistivity inversion coastal aquifer parameters Layer model
下载PDF
Prediction of roadheaders' performance using artificial neural network approaches (MLP and KOSFM) 被引量:11
9
作者 Arash Ebrahimabadi Mohammad Azimipour Ali Bahreini 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2015年第5期573-583,共11页
A pplication o f m echanical excavators is one o f th e m o st com m only used excavation m eth o d s because itcan bring th e p ro ject m ore productivity, accuracy and safety. A m ong th e m echanical excavators, ro... A pplication o f m echanical excavators is one o f th e m o st com m only used excavation m eth o d s because itcan bring th e p ro ject m ore productivity, accuracy and safety. A m ong th e m echanical excavators, roadhead ers are m echanical m iners w h ich have b een extensively u se d in tu n n elin g , m ining an d civil indu stries. Perform ance pred ictio n is an im p o rta n t issue for successful ro a d h e a d e r application andgenerally deals w ith m achine selection, p ro d u ctio n rate an d b it consu m p tio n . The m ain aim o f thisresearch is to investigate th e c u ttin g p erfo rm an ce (in stan tan eo u s c u ttin g rates (ICRs)) o f m ed iu m -d u tyro ad h ead ers by using artificial neural n etw o rk (ANN) approach. T here are d ifferent categories forANNs, b u t based o n train in g alg o rith m th e re are tw o m ain k in d s: supervised and u n su p erv ised . Them u lti-lay er p ercep tro n (MLP) an d K ohonen self-organizing feature m ap (KSOFM) are th e m o st w idelyused neu ral netw o rk s for supervised an d u n su p erv ised ones, respectively. For gaining this goal, ad atab ase w as prim arily provided from ro ad h e a d e rs' p erfo rm an ce an d geom echanical characteristics o frock form ations in tu n n els and d rift galleries in Tabas coal m ine, th e larg est an d th e only fullymech an ized coal m ine in Iran. T hen th e datab ase w as analyzed in o rd e r to yield th e m ost im p o rtan tfactor for ICR by using relatively im p o rta n t factor in w hich G arson eq u atio n w as utilized. The MLPn etw o rk w as train ed by 3 in p u t p ara m e te rs including rock m ass pro p erties, rock quality d esignation(RQD), in tact rock p ro p erties such as uniaxial com pressive stre n g th (UCS) an d Brazilian ten sile stren g th(BTS), and o n e o u tp u t p a ra m e te r (ICR). In o rd e r to have m ore v alidation o n MLP o u tp u ts, KSOFM visualizationw as applied. The m ean square e rro r (MSE) an d regression coefficient (R ) o f MLP w e re found tobe 5.49 an d 0.97, respectively. M oreover, KSOFM n etw o rk has a m ap size o f 8 x 5 and final qu an tizatio nan d topographic erro rs w e re 0.383 an d 0.032, respectively. The results show th a t MLP neural n etw orkshave a strong capability to p red ict an d ev alu ate th e perfo rm an ce o f m ed iu m -d u ty ro ad h ead ers in coalm easu re rocks. Furtherm ore, it is concluded th a t KSOFM neural n etw o rk is an efficient w ay for u n d e rstand in g system beh av io r an d know ledge extraction. Finally, it is indicated th a t UCS has m ore influenceo n ICR b y applying th e b e st train ed MLP n etw o rk w eig h ts in G arson eq u atio n w h ich is also confirm ed byKSOFM. 展开更多
关键词 artificial neural network(ann) Performance prediction ROADHEADER Instantaneous cutting rate(ICR) Tabas coal mine project
下载PDF
Application of artificial neural networks for predicting the impact of rolling dynamic compaction using dynamic cone penetrometer test results 被引量:7
10
作者 R.A.T.M. Ranasinghe M.B. Jaksa +1 位作者 Y.L. Kuo F. Pooya Nejad 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第2期340-349,共10页
Rolling dynamic compaction(RDC),which involves the towing of a noncircular module,is now widespread and accepted among many other soil compaction methods.However,to date,there is no accurate method for reliable predic... Rolling dynamic compaction(RDC),which involves the towing of a noncircular module,is now widespread and accepted among many other soil compaction methods.However,to date,there is no accurate method for reliable prediction of the densification of soil and the extent of ground improvement by means of RDC.This study presents the application of artificial neural networks(ANNs) for a priori prediction of the effectiveness of RDC.The models are trained with in situ dynamic cone penetration(DCP) test data obtained from previous civil projects associated with the 4-sided impact roller.The predictions from the ANN models are in good agreement with the measured field data,as indicated by the model correlation coefficient of approximately 0.8.It is concluded that the ANN models developed in this study can be successfully employed to provide more accurate prediction of the performance of the RDC on a range of soil types. 展开更多
关键词 Rolling dynamic compaction(RDC) Ground improvement artificial neural network(ann) Dynamic cone penetration(DCP) test
下载PDF
Recovery of saturated signal waveform acquired from high-energy particles with artificial neural networks 被引量:4
11
作者 Yu Liu Jing-Jun Zhu +5 位作者 Neil Roberts Ke-Ming Chen Yu-Lu Yan Shuang-Rong Mo Peng Gu Hao-Yang Xing 《Nuclear Science and Techniques》 SCIE CAS CSCD 2019年第10期30-39,共10页
Artificial neural networks(ANNs)are a core component of artificial intelligence and are frequently used in machine learning.In this report,we investigate the use of ANNs to recover the saturated signals acquired in hi... Artificial neural networks(ANNs)are a core component of artificial intelligence and are frequently used in machine learning.In this report,we investigate the use of ANNs to recover the saturated signals acquired in highenergy particle and nuclear physics experiments.The inherent properties of the detector and hardware imply that particles with relatively high energies probably often generate saturated signals.Usually,these saturated signals are discarded during data processing,and therefore,some useful information is lost.Thus,it is worth restoring the saturated signals to their normal form.The mapping from a saturated signal waveform to a normal signal waveform constitutes a regression problem.Given that the scintillator and collection usually do not form a linear system,typical regression methods such as multi-parameter fitting are not immediately applicable.One important advantage of ANNs is their capability to process nonlinear regression problems.To recover the saturated signal,three typical ANNs were tested including backpropagation(BP),simple recurrent(Elman),and generalized radial basis function(GRBF)neural networks(NNs).They represent a basic network structure,a network structure with feedback,and a network structure with a kernel function,respectively.The saturated waveforms were produced mainly by the environmental gamma in a liquid scintillation detector for the China Dark Matter Detection Experiment(CDEX).The training and test data sets consisted of 6000 and 3000 recordings of background radiation,respectively,in which saturation was simulated by truncating each waveform at 40%of the maximum signal.The results show that the GBRF-NN performed best as measured using a Chi-squared test to compare the original and reconstructed signals in the region in which saturation was simulated.A comparison of the original and reconstructed signals in this region shows that the GBRF neural network produced the best performance.This ANN demonstrates a powerful efficacy in terms of solving the saturation recovery problem.The proposed method outlines new ideas and possibilities for the recovery of saturated signals in high-energy particle and nuclear physics experiments.This study also illustrates an innovative application of machine learning in the analysis of experimental data in particle physics. 展开更多
关键词 Saturated signals artificial NEURAL networks(anns) RECOVERY of signal waveform Generalized radial basis function Backpropagation NEURAL NETWORK ELMAN NEURAL NETWORK
下载PDF
Structural reliability analysis using enhanced cuckoo search algorithm and artificial neural network 被引量:6
12
作者 QIN Qiang FENG Yunwen LI Feng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第6期1317-1326,共10页
The present study proposed an enhanced cuckoo search(ECS) algorithm combined with artificial neural network(ANN) as the surrogate model to solve structural reliability problems. In order to enhance the accuracy and co... The present study proposed an enhanced cuckoo search(ECS) algorithm combined with artificial neural network(ANN) as the surrogate model to solve structural reliability problems. In order to enhance the accuracy and convergence rate of the original cuckoo search(CS) algorithm, the main parameters namely, abandon probability of worst nests paand search step sizeα0 are dynamically adjusted via nonlinear control equations. In addition, a global-best guided equation incorporating the information of global best nest is introduced to the ECS to enhance its exploitation. Then, the proposed ECS is linked to the well-trained ANN model for structural reliability analysis. The computational capability of the proposed algorithm is validated using five typical structural reliability problems and an engineering application. The comparison results show the efficiency and accuracy of the proposed algorithm. 展开更多
关键词 structural reliability enhanced cuckoo search(ECS) artificial neural network(ann) cuckoo search(CS) algorithm
下载PDF
Application of Artificial Neural Network to Predicting Hardenability of Gear Steel 被引量:4
13
作者 GAO Xiu-hua QI Ke-min +3 位作者 DENG Tian-yong QIU Chun-lin ZHOU Ping DU Xian-bin 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2006年第6期71-73,共3页
The prediction of the hardenability and chemical composition of gear steel was studied using artificial neural networks. A software was used to quantitatively forecast the hardenability by its chemical composition or ... The prediction of the hardenability and chemical composition of gear steel was studied using artificial neural networks. A software was used to quantitatively forecast the hardenability by its chemical composition or the chemical composition by its hardenability. The prediction result is more precise than that obtained from the traditional method based on the simple mathematical regression model. 展开更多
关键词 artificial neural network (ann gear steel HARDENABILITY 20CrMnTiH
下载PDF
Science Letters:Serum protein fingerprinting coupled with artificial neural network distinguishes glioma from healthy population or brain benign tumor 被引量:6
14
作者 刘建 郑树 +2 位作者 余捷凯 张建民 陈喆 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2005年第1期4-10,共7页
To screen and evaluate protein biomarkers for the detection of gliomas (Astrocytoma grade Ⅰ-Ⅳ) from healthy individuals and gliomas from brain benign tumors by using surface enhanced laser desorption/ionization time... To screen and evaluate protein biomarkers for the detection of gliomas (Astrocytoma grade Ⅰ-Ⅳ) from healthy individuals and gliomas from brain benign tumors by using surface enhanced laser desorption/ionization time of flight mass spectrometry (SELDI-TOF-MS) coupled with an artificial neural network (ANN) algorithm. SELDI-TOF-MS protein fingerprinting of serum from 105 brain tumor patients and healthy individuals, included 28 patients with glioma (Astrocytoma Ⅰ-Ⅳ), 37 patients with brain benign tumor, and 40 age-matched healthy individuals. Two thirds of the total samples of every compared pair as training set were used to set up discriminating patterns, and one third of total samples of every compared pair as test set were used to cross-validate; simultaneously, discriminate-cluster analysis derived SPSS 10.0 software was used to compare Astrocytoma grade Ⅰ-Ⅱ with grade Ⅲ-Ⅳ ones. An accuracy of 95.7%, sensitivity of 88.9%, specificity of 100%, positive predictive value of 90% and negative predictive value of 100% were obtained in a blinded test set comparing gliomas patients with healthy individuals; an accuracy of 86.4%, sensitivity of 88.9%, specificity of 84.6%, positive predictive value of 90% and negative predictive value of 85.7% were obtained when patient's gliomas was compared with benign brain tumor. Total accuracy of 85.7%, accuracy of grade Ⅰ-Ⅱ Astrocytoma was 86.7%, accuracy ofⅢ-Ⅳ Astrocytoma was 84.6% were obtained when grade Ⅰ-Ⅱ Astrocytoma was compared with grade Ⅲ-Ⅳ ones (discriminant analysis). SELDI-TOF-MS combined with bioinformatics tools, could greatly facilitate the discovery of better biomarkers. The high sensitivity and specificity achieved by the use of selected biomarkers showed great potential application for the discrimination of gliomas patients from healthy individuals and glioma from brain benign tumors. 展开更多
关键词 ASTROCYTOMA artificial Neural Network(ann) SELDI-TOF-MS Protein fingerprint Diagnosis
下载PDF
Compressive Strength Estimation for the Fiber-Reinforced Polymer (FRP)-Confined Concrete Columns with Different Shapes Using Artificial Neural Networks 被引量:3
15
作者 曹玉贵 李小青 胡隽 《Journal of Donghua University(English Edition)》 EI CAS 2015年第3期395-400,共6页
An evaluation of existing strength of concrete columns confined with fiber-reinforced polymer( FRP) was presented with extensive collection of experimental data. According to the evaluation results, artificial neural ... An evaluation of existing strength of concrete columns confined with fiber-reinforced polymer( FRP) was presented with extensive collection of experimental data. According to the evaluation results, artificial neural networks( ANNs) model to predict the ultimate strength of FRP confined column with different shapes was proposed. The models had seven inputs including the column length,the tensile strength of the FRP in the hoop direction,the total thickness of FRP,the diameter of the concrete specimen,the elastic modulus of FRP,the corner radius and the concrete compressive strength. The compressive strength of the confined concrete was the output data. The results reveal that the proposed models have good prediction and generalization capacity with acceptable errors. 展开更多
关键词 compressive strength concrete column artificial neural networks(ann) fiber-reinforced polymer(FRP)
下载PDF
Prediction of Sintering Strength for Selective Laser Sintering of Polystyrene Using Artificial Neural Network 被引量:4
16
作者 王传洋 姜宁 +2 位作者 陈再良 陈瑶 董渠 《Journal of Donghua University(English Edition)》 EI CAS 2015年第5期825-830,共6页
In the present work,a study is made to investigate the effects of process parameters,namely,laser power,scanning speed,hatch spacing, layer thickness and powder temperature, on the tensile strength for selective laser... In the present work,a study is made to investigate the effects of process parameters,namely,laser power,scanning speed,hatch spacing, layer thickness and powder temperature, on the tensile strength for selective laser sintering( SLS) of polystyrene( PS). Artificial neural network( ANN) methodology is employed to develop mathematical relationships between the process parameters and the output variable of the sintering strength. Experimental data are used to train and test the network. The present neural network model is applied to predicting the experimental outcome as a function of input parameters within a specified range. Predicted sintering strength using the trained back propagation( BP) network model showed quite a good agreement with measured ones. The results showed that the networks had high processing speed,the abilities of error-correcting and self-organizing. ANN models had favorable performance and proved to be an applicable tool for predicting sintering strength SLS of PS. 展开更多
关键词 selective laser sintering(SLS) polystyrene(PS) STRENGTH artificial neural network(ann)
下载PDF
Prediction of TBM jamming risk in squeezing grounds using Bayesian and artificial neural networks 被引量:13
17
作者 Rohola Hasanpour Jamal Rostami +2 位作者 Jürgen Schmitt Yilmaz Ozcelik Babak Sohrabian 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第1期21-31,共11页
This study presents an application of artificial neural network(ANN)and Bayesian network(BN)for evaluation of jamming risk of the shielded tunnel boring machines(TBMs)in adverse ground conditions such as squeezing gro... This study presents an application of artificial neural network(ANN)and Bayesian network(BN)for evaluation of jamming risk of the shielded tunnel boring machines(TBMs)in adverse ground conditions such as squeezing grounds.The analysis is based on database of tunneling cases by numerical modeling to evaluate the ground convergence and possibility of machine entrapment.The results of initial numerical analysis were verified in comparison with some case studies.A dataset was established by performing additional numerical modeling of various scenarios based on variation of the most critical parameters affecting shield jamming.This includes compressive strength and deformation modulus of rock mass,tunnel radius,shield length,shield thickness,in situ stresses,depth of over-excavation,and skin friction between shield and rock.Using the dataset,an ANN was trained to predict the contact pressures from a series of ground properties and machine parameters.Furthermore,the continuous and discretized BNs were used to analyze the risk of shield jamming.The results of these two different BN methods are compared to the field observations and summarized in this paper.The developed risk models can estimate the required thrust force in both cases.The BN models can also be used in the cases with incomplete geological and geomechanical properties. 展开更多
关键词 BAYESIAN network(BN) artificial neural network(ann) Shielded tunnel BORING machine(TBM) Jamming RISK Numerical simulation SQUEEZING ground
下载PDF
Artificial neural network optimized by differential evolution for predicting diameters of jet grouted columns 被引量:6
18
作者 Pierre Guy Atangana Njock Shui-Long Shen +1 位作者 Annan Zhou Giuseppe Modoni 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第6期1500-1512,共13页
A novel and effective artificial neural network(ANN) optimized using differential evolution(DE) is first introduced to provide a robust and reliable forecasting of jet grouted column diameters.The proposed computation... A novel and effective artificial neural network(ANN) optimized using differential evolution(DE) is first introduced to provide a robust and reliable forecasting of jet grouted column diameters.The proposed computational method adopts the DE algorithm to tackle the difficulties in the training and performance of neural networks and optimize the four quintessential hyper-parameters(i.e.the epoch size,the number of neurons in a hidden layer,the number of hidden layers,and the regularization parameter) that govern the neural network efficacy.This approach is further enhanced by a stochastic gradient optimization algorithm to allow ’expensive’ computation efforts.The ANN-DE is first trained using a prepared jet grouting dataset,then verified and compared with the prevalent machine learning tools,i.e.neural networks and support vector machine(SVM).The results show that,the ANN-DE outperforms the existing methods for predicting the diameter of jet grouting columns since it well balances training efficiency and model performance.Specifically,the ANN-DE achieved root mean square error(RMSE)values of 0.90603 and 0.92813 for the training and testing phases,respectively.The corresponding values were 0.8905 and 0.9006 for the optimized ANN,then,0.87569 and 0.89968 for the optimized SVM,respectively.The proposed paradigm is bound to be useful for solving various geotechnical engineering problems regardless of multi-dimension and nonlinearity. 展开更多
关键词 artificial neural network(ann) Differential evolution(DE) Jet grouting Model optimization REGULARIZATION
下载PDF
Optimization of Laser Ablation Technology for PDPhSM Matrix Nanocomposite Thin Film by Artificial Neural Networks-particle Swarm Algorithm 被引量:3
19
作者 唐普洪 宋仁国 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第2期188-193,共6页
A new thermal ring-opening polymerization technique for 1, 1, 3, 3-tetra-ph enyl-1, 3-disilacyclobutane (TPDC) based on the use of metal nanoparticles produced by pulsed laser ablation was investigated. This method ... A new thermal ring-opening polymerization technique for 1, 1, 3, 3-tetra-ph enyl-1, 3-disilacyclobutane (TPDC) based on the use of metal nanoparticles produced by pulsed laser ablation was investigated. This method facilitates the synthesis of polydiphenysilylenemethyle (PDPhSM) thin film, which is difficult to make by conventional methods because of its insolubility and high melting point. TPDC was first evaporated on silicon substrates and then exposed to metal nanoparticles deposition by pulsed laser ablation prior to heat treatment.The TPDC films with metal nanoparticles were heated in an electric furnace in air atmosphere to induce ring-opening polymerization of TPDC. The film thicknesses before and after polymerization were measured by a stylus profilometer. Since the polymerization process competes with re-evaporation of TPDC during the heating, the thickness ratio of the polymer to the monomer was defined as the polymerization efficiency, which depends greatly on the technology conditions. Therefore, a well trained radial base function neural network model was constructed to approach the complex nonlinear relationship. Moreover, a particle swarm algorithm was firstly introduced to search for an optimum technology directly from RBF neural network model. This ensures that the fabrication of thin film with appropriate properties using pulsed laser ablation requires no in-depth understanding of the entire behavior of the technology conditions. 展开更多
关键词 nanocomposite thin film pulsed laser deposition(PLD) artificial neural net- works(ann particle swarm optimization (PSO)
下载PDF
Regression-Based Artificial Neural Network Methodology in Response Surface Methodology 被引量:4
20
作者 何桢 肖粤翔 《Transactions of Tianjin University》 EI CAS 2004年第2期153-157,共5页
Response surface methodology (RSM) is an important tool for process parameter optimization, robust design and other quality improvement efforts. When the relationship between influential input variables and output res... Response surface methodology (RSM) is an important tool for process parameter optimization, robust design and other quality improvement efforts. When the relationship between influential input variables and output response is very complex, it’s hard to find the real response surface using RSM. In recent years artificial neural network(ANN) has been used in RSM. But the classical ANN does not work well under the constraints of real applications. An algorithm of regression-based ANN(R-ANN) is proposed in this paper, which is a supplement to the classical ANN methodology. It makes network closer to the response surface, so that training time is reduced and robustness is strengthened. The procedure of improving ANN by regressions is described and the comparisons among R-ANN,RSM and classical ANN are computed graphically in three examples. Our research shows that the R-ANN methodology is a good supplement to the RSM and classical ANN methodology, which can yield lower standard error of prediction under conditions that the scope of experiment is rigidly restricted. 展开更多
关键词 response surface methodology(RSM) artificial neural network(ann) regression-based ann
下载PDF
上一页 1 2 68 下一页 到第
使用帮助 返回顶部