Distribution generation(DG)technology based on a variety of renewable energy technologies has developed rapidly.A large number of multi-type DG are connected to the distribution network(DN),resulting in a decline in t...Distribution generation(DG)technology based on a variety of renewable energy technologies has developed rapidly.A large number of multi-type DG are connected to the distribution network(DN),resulting in a decline in the stability of DN operation.It is urgent to find a method that can effectively connect multi-energy DG to DN.photovoltaic(PV),wind power generation(WPG),fuel cell(FC),and micro gas turbine(MGT)are considered in this paper.A multi-objective optimization model was established based on the life cycle cost(LCC)of DG,voltage quality,voltage fluctuation,system network loss,power deviation of the tie-line,DG pollution emission index,and meteorological index weight of DN.Multi-objective artificial bee colony algorithm(MOABC)was used to determine the optimal location and capacity of the four kinds of DG access DN,and compared with the other three heuristic algorithms.Simulation tests based on IEEE 33 test node and IEEE 69 test node show that in IEEE 33 test node,the total voltage deviation,voltage fluctuation,and system network loss of DN decreased by 49.67%,7.47%and 48.12%,respectively,compared with that without DG configuration.In the IEEE 69 test node,the total voltage deviation,voltage fluctuation and system network loss of DN in the MOABC configuration scheme decreased by 54.98%,35.93%and 75.17%,respectively,compared with that without DG configuration,indicating that MOABC can reasonably plan the capacity and location of DG.Achieve the maximum trade-off between DG economy and DN operation stability.展开更多
High power dissipating artificial intelligence (AI) chips require significant cooling to operate at maximum performance. Current trends regarding the integration of AI, as well as the power/cooling demands of high-per...High power dissipating artificial intelligence (AI) chips require significant cooling to operate at maximum performance. Current trends regarding the integration of AI, as well as the power/cooling demands of high-performing server systems pose an immense thermal challenge for cooling. The use of refrigerants as a direct-to-chip cooling method is investigated as a potential cooling solution for cooling AI chips. Using a vapor compression refrigeration system (VCRS), the coolant temperature will be sub-ambient thereby increasing the total cooling capacity. Coupled with the implementation of a direct-to-chip boiler, using refrigerants to cool AI server systems can materialize as a potential solution for current AI server cooling demands. In this study, a comparison of 8 different refrigerants: R-134a, R-153a, R-717, R-508B, R-22, R-12, R-410a, and R-1234yf is analyzed for optimal performance. A control theoretical VCRS model is created to assess variable refrigerants under the same operational conditions. From this model, the coefficient of performance (COP), required mass flow rate of refrigerant, work required by the compressor, and overall heat transfer coefficient is determined for all 8 refrigerants. Lastly, a comprehensive analysis is provided to determine the most optimal refrigerants for cooling applications. R-717, commonly known as Ammonia, was found to have the highest COP value thus proving to be the optimal refrigerant for cooling AI chips and high-performing server applications.展开更多
Mechatronic product development is a complex and multidisciplinary field that encompasses various domains, including, among others, mechanical engineering, electrical engineering, control theory and software engineeri...Mechatronic product development is a complex and multidisciplinary field that encompasses various domains, including, among others, mechanical engineering, electrical engineering, control theory and software engineering. The integration of artificial intelligence technologies is revolutionizing this domain, offering opportunities to enhance design processes, optimize performance, and leverage vast amounts of knowledge. However, human expertise remains essential in contextualizing information, considering trade-offs, and ensuring ethical and societal implications are taken into account. This paper therefore explores the existing literature regarding the application of artificial intelligence as a comprehensive database, decision support system, and modeling tool in mechatronic product development. It analyzes the benefits of artificial intelligence in enabling domain linking, replacing human expert knowledge, improving prediction quality, and enhancing intelligent control systems. For this purpose, a consideration of the V-cycle takes place, a standard in mechatronic product development. Along this, an initial assessment of the AI potential is shown and important categories of AI support are formed. This is followed by an examination of the literature with regard to these aspects. As a result, the integration of artificial intelligence in mechatronic product development opens new possibilities and transforms the way innovative mechatronic systems are conceived, designed, and deployed. However, the approaches are only taking place selectively, and a holistic view of the development processes and the potential for robust and context-sensitive artificial intelligence along them is still needed.展开更多
Objective:The relationship between serum beta human chorionic gonadotropin(β-hCG)levels of patients(7 days after the transplantation of frozen-thawed embryos)and the pregnancy outcomes was investigated.Methods:This s...Objective:The relationship between serum beta human chorionic gonadotropin(β-hCG)levels of patients(7 days after the transplantation of frozen-thawed embryos)and the pregnancy outcomes was investigated.Methods:This study was designed as a retrospective clinical trial of 366 women who underwent frozen-thawed embryo transfers(FETs)in artificial cycles.Patients were divided into three groups:clinical pregnancy group,biochemical pregnancy group,and non-pregnant group according to their pregnancy outcomes.Serumβ-hCG levels were tested on day 4,7,9,11 and 14 after FET.Results:In the clinical pregnancy group,the serumβ-hCG levels after 7-day post-transplantation were significantly elevated(16.20 IU/L vs.3.07 vs.0.1 IU/L;P<0.05)compared with the other two groups.Furthermore,it was found that Area Under Curve(AUC=0.96)was significant with cut-off value higher than 4.26 IU/L(sensitivity=92.3%,specificity=90.2%)to predict the clinical pregnancy outcomes in the receiver operating characteristic(ROC)analysis ofβ-hCG concentrations on day 7 of post-transplantation.Conclusion:Our results suggested that the elevated serumβ-hCG levels on day 7 of post-transplantation could predict the positive clinical pregnancy outcomes in artificial FET cycles.展开更多
Based on the one-dimensional and unsteady-state Krogh model, this paper investigates mass transfer of artificial kidney under three blood cycle modes during the course of hemodialysis. The variations of the permeable ...Based on the one-dimensional and unsteady-state Krogh model, this paper investigates mass transfer of artificial kidney under three blood cycle modes during the course of hemodialysis. The variations of the permeable solute clearance with increasing time and the dialysis time with increasing blood flux are simulated in detail,and then one optimal blood cycle mode is acquired. The results are very important to improve the clinical dialysis efficiency of artificial kidney.展开更多
For the 22-year solar cycle oscillation there is no external time dependent source. A nonlinear oscillation, the solar cycle must be generated internally, and Babcock-Leighton models apply an artificial nonlinear sour...For the 22-year solar cycle oscillation there is no external time dependent source. A nonlinear oscillation, the solar cycle must be generated internally, and Babcock-Leighton models apply an artificial nonlinear source term that can simulate the observations—which leaves open the question of the actual source mechanism for the solar cycle. Addressing this question, we propose to take guidance from the wave mechanism that generates the 2-year Quasi-biennial Oscillation (QBO) in the Earth atmosphere. Upward propagating gravity waves, eastward and westward, deposit momentum to generate the observed zonal wind oscillation. On the Sun, helioseismology has provided a thorough understanding of the acoustic p-waves, which propagate down into the convective envelope guided by the increasing temperature and related propagation velocity. Near the tachocline with low turbulent viscosity, the waves propagating eastward and westward can produce an axisymmetric 22-year oscillation of the zonal flow velocities that can generate the magnetic solar dynamo. Following the Earth model, waves in opposite directions can generate in the Sun wind and magnetic field oscillations in opposite directions, the proposition of a potential solar cycle mechanism.展开更多
Foreword ISO(the International Organization for Standardization)is a worldwide federation of national standards bodies(ISO member bodies).The work of preparing International Standards is normally carried out through I...Foreword ISO(the International Organization for Standardization)is a worldwide federation of national standards bodies(ISO member bodies).The work of preparing International Standards is normally carried out through ISO technical committees.Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee.展开更多
All-solid-state lithium batteries(ASSLBs) employing sulfide electrolyte and lithium(Li) anode have received increasing attention due to the intrinsic safety and high energy density.However,the thick electrolyte layer ...All-solid-state lithium batteries(ASSLBs) employing sulfide electrolyte and lithium(Li) anode have received increasing attention due to the intrinsic safety and high energy density.However,the thick electrolyte layer and lithium dendrites formed at the electrolyte/Li anode interface hinder the realization of high-performance ASSLBs.Herein,a novel membrane consisting of Li_(6)PS_(5) Cl(LPSCl),poly(ethylene oxide)(PEO) and Li-salt(LiTFSI) was prepared as sulfide-based composite solid electrolyte(LPSCl-PEO3-LiTFSI)(LPSCl:PEO=97:3 wt/wt;EO:Li=8:1 mol/mol),which delivers high ionic conductivity(1.1 × 10^(-3) S cm^(-1)) and wide electrochemical window(4.9 V vs.Li^(+)/Li) at 25 ℃.In addition,an ex-situ artificial solid electrolyte interphase(SEI) film enriched with LiF and Li3 N was designed as a protective layer on Li anode(Li(SEI)) to suppress the growth of lithium dendrites.Benefiting from the synergy of sulfide-based composite solid electrolyte and ex-situ artificial SEI,cells of S-CNTs/LPSCI-PEO3-LiTFSI/Li(SEI) and Al_(2)O_(3)@LiNi_(0.5)Co_(0.3)Mn_(0.2)O_(2)/LPSCl-PEO3-LiTFSI/Li(SEI) are assembled and both exhibit high initial discharge capacity of 1221.1 mAh g^(-1)(135.8 mAh g^(-1)) and enhanced cycling stability with 81.6% capacity retention over 200 cycles at 0.05 C(89.2% over 100 cycles at 0.1 C).This work provides a new insight into the synergy of composite solid electrolyte and artificial SEI for achieving high-performance ASSLBs.展开更多
Recent years witness a great deal of interest in artificial intelligence(AI)tools in the area of optimization.AI has developed a large number of tools to solve themost difficult search-and-optimization problems in com...Recent years witness a great deal of interest in artificial intelligence(AI)tools in the area of optimization.AI has developed a large number of tools to solve themost difficult search-and-optimization problems in computer science and operations research.Indeed,metaheuristic-based algorithms are a sub-field of AI.This study presents the use of themetaheuristic algorithm,that is,water cycle algorithm(WCA),in the transportation problem.A stochastic transportation problem is considered in which the parameters supply and demand are considered as random variables that follow the Weibull distribution.Since the parameters are stochastic,the corresponding constraints are probabilistic.They are converted into deterministic constraints using the stochastic programming approach.In this study,we propose evolutionary algorithms to handle the difficulties of the complex high-dimensional optimization problems.WCA is influenced by the water cycle process of how streams and rivers flow toward the sea(optimal solution).WCA is applied to the stochastic transportation problem,and obtained results are compared with that of the new metaheuristic optimization algorithm,namely the neural network algorithm which is inspired by the biological nervous system.It is concluded that WCA presents better results when compared with the neural network algorithm.展开更多
The adhesion of coatings to wood is important for their long-term performance.In this study,the adhesion strength of water-based acrylate coatings used for wooden windows after exposure to artificial weathering(AW)and...The adhesion of coatings to wood is important for their long-term performance.In this study,the adhesion strength of water-based acrylate coatings used for wooden windows after exposure to artificial weathering(AW)and temperature cycling(TC)was investigated.The analysis of the adhesion quality of coatings was performed via a pull-off test and failure characteristics.The 3-layered and 4-layered white and brown acrylate dispersions from six different producers were compared and the effect of coating thickness on adhesion strength was investigated.The adhesion strength values proved to be very variable.After AW,the adhesion strength and its variability increased for all the samples.TC had no statistically significant effect on the adhesion strength values.White coating systems were initially characterized by lower adhesion strength,but after AW and TC,they reached higher adhesion strength values than brown ones.The overall highest adhesion after AW and TC was recorded for the coatings based on alkyd-acrylate hybrid basis(Producer 3),while the lowest adhesion variability after AW was measured for one type of tested acrylate coating(Producer 4).The effect of different layering on adhesion strength was not demonstrated in this study.展开更多
Objective To observe the clinical efficacy of acupuncture and moxibustion in treatment of functional amenorrhea by establishing artificial cycle.Method One hundred and twelve eligible patients with functional amenorrh...Objective To observe the clinical efficacy of acupuncture and moxibustion in treatment of functional amenorrhea by establishing artificial cycle.Method One hundred and twelve eligible patients with functional amenorrhea were divided into an acupuncture-moxibustion group(64 cases) and a western medication group(48 cases) by adopting random method.According to the pattern differentiation of amenorrhea of traditional Chinese medicine,the patients in the acupuncture-moxibustion group were classified into two types:amenorrhea due to blood depletion and amenorrhea due to stagnation of blood.For patients with amenorrhea due to blood depletion,Guanyuan(关元 CV4),Zhongji(中极CV 3),GuiTlai(归来ST 29),Geshu(膈俞 BL 17),Ganshu(肝俞BL 18),Pishu(脾俞 BL 20) and Shenshu(肾俞 BL 23) were selected.At first,BL 17,BL 18,BL 20 and BL 23 were needled;after deqi,reinforcing method was applied,and the needles were not retained.Then,warmingneedle moxibustion was applied at CV 4,CV 3 and ST 29,and the needles were retained for 30 min.For patients with amenorrhea due to stagnation of blood,CV 3,Qihai(气海CV 6),Xuehai(血海 SP 10),Sanyinjiao(三阴交 SP 6)and Xingjian(行间 LR 2) were selected,reducing method was applied,and the needles were retained for 30 min.The treatment was performed once a day,and treatment for 15 consecutive days were the 1st cycle.The 2nd and3 rd cycles started from the 5th day of menstruation(for the patients still not menstruating,the 2nd and 3rd cycles started from the 29 th and 57 th days since the 1st day of treatment),and the treatment lasted for 15 days.Three cycles were needed.In the western medicine group,estrogen-progestogen was taken orally for 21 days(one cycle) to establish a artificial cycle.The levels of FSH and LH were tested and compared on the 3rd day of menstruation before treatment and after the 3rd cycle of treatment,and the adverse effects were analyzed statistically.Follow-up visit was conducted for the patients after treatment for three cycles,and the recurrence rate was calculated.Result The levels of FSH and LH of patients with functional amenorrhea were enhanced significantly through establishing artificial cycle by acupuncture and moxibustion.There was no significant difference between the acupuncture-moxibustion group and the western medication group in effective rate(P〉0.05);but the adverse effect rate(1.49%) and recurrence rate(25.0%) of the acupuncture-moxibustion group were lower than that of the western medication group(with the adverse effect rate of 4.14%,and recurrence rate of 69.8%)(both P〈0.05).Conclusion The levels of FSH and LH of patients with functional amenorrhea can be enhanced significantly through establishing artificial cycle by acupuncture and moxibustion.The efficacy of acupuncture and moxibustion in treatment of functional amenorrhea by establishing artificial cycle is equivalent to that of oral administration of estrogen-progestogen in treatment of functional amenorrhea by establishing artificial cycle,but the adverse effect rate and recurrence rate of acupuncture and moxibustion group are lower.展开更多
Photosynthesis is the most important biochemical reaction on Earth. It has co-evolved and developed with the Earth, driving the biogeochemical cycle of all elements on the planet and serving as the only chemical proce...Photosynthesis is the most important biochemical reaction on Earth. It has co-evolved and developed with the Earth, driving the biogeochemical cycle of all elements on the planet and serving as the only chemical process in nature that can convert light energy into chemical energy. Some heavy oxygen isotopic(^(18)O) labeling experiments have"conclusively" demonstrated that the oxygen released by photosynthesis comes only from water and are written into textbooks. However, it is not difficult to find that bicarbonate has never been excluded from the direct substrate of photosynthesis from beginning to end during the history of photosynthesis research. No convincing mechanism can be used to explain photosynthetic oxygen evolution solely from water photolysis. The bicarbonate effect, the Dole effect, the thermodynamic convenience of bicarbonate photolysis, the crystal structure characteristics of photosystem Ⅱ, and the reinterpretation of heavy oxygen isotopic labeling(^(18)O)experiments all indicate that the photosynthetic oxygen evolution does not exclude the important role and contribution of bicarbonate photolysis. The recently proposed view that bicarbonate photolysis is the premise of water photolysis, bicarbonate photolysis and water photolysis work together with a 1:1(mol/mol) stoichiometric relationship, and the stoichiometric relationship between oxygen and carbon dioxide released during photosynthetic oxygen evolution is also 1:1, has excellent applicability and objectivity, which can logically and reasonably explain the precise coordination between light and dark reactions during photosynthesis, the bicarbonate effect, the Dole effect, the Kok cycle and the neutrality of water and carbon in nature.This is of great significance for constructing the bionic artificial photosynthetic reactors and scientifically answering the question of the source of elemental stoichiometric relationships in nature.展开更多
文摘Distribution generation(DG)technology based on a variety of renewable energy technologies has developed rapidly.A large number of multi-type DG are connected to the distribution network(DN),resulting in a decline in the stability of DN operation.It is urgent to find a method that can effectively connect multi-energy DG to DN.photovoltaic(PV),wind power generation(WPG),fuel cell(FC),and micro gas turbine(MGT)are considered in this paper.A multi-objective optimization model was established based on the life cycle cost(LCC)of DG,voltage quality,voltage fluctuation,system network loss,power deviation of the tie-line,DG pollution emission index,and meteorological index weight of DN.Multi-objective artificial bee colony algorithm(MOABC)was used to determine the optimal location and capacity of the four kinds of DG access DN,and compared with the other three heuristic algorithms.Simulation tests based on IEEE 33 test node and IEEE 69 test node show that in IEEE 33 test node,the total voltage deviation,voltage fluctuation,and system network loss of DN decreased by 49.67%,7.47%and 48.12%,respectively,compared with that without DG configuration.In the IEEE 69 test node,the total voltage deviation,voltage fluctuation and system network loss of DN in the MOABC configuration scheme decreased by 54.98%,35.93%and 75.17%,respectively,compared with that without DG configuration,indicating that MOABC can reasonably plan the capacity and location of DG.Achieve the maximum trade-off between DG economy and DN operation stability.
文摘High power dissipating artificial intelligence (AI) chips require significant cooling to operate at maximum performance. Current trends regarding the integration of AI, as well as the power/cooling demands of high-performing server systems pose an immense thermal challenge for cooling. The use of refrigerants as a direct-to-chip cooling method is investigated as a potential cooling solution for cooling AI chips. Using a vapor compression refrigeration system (VCRS), the coolant temperature will be sub-ambient thereby increasing the total cooling capacity. Coupled with the implementation of a direct-to-chip boiler, using refrigerants to cool AI server systems can materialize as a potential solution for current AI server cooling demands. In this study, a comparison of 8 different refrigerants: R-134a, R-153a, R-717, R-508B, R-22, R-12, R-410a, and R-1234yf is analyzed for optimal performance. A control theoretical VCRS model is created to assess variable refrigerants under the same operational conditions. From this model, the coefficient of performance (COP), required mass flow rate of refrigerant, work required by the compressor, and overall heat transfer coefficient is determined for all 8 refrigerants. Lastly, a comprehensive analysis is provided to determine the most optimal refrigerants for cooling applications. R-717, commonly known as Ammonia, was found to have the highest COP value thus proving to be the optimal refrigerant for cooling AI chips and high-performing server applications.
文摘Mechatronic product development is a complex and multidisciplinary field that encompasses various domains, including, among others, mechanical engineering, electrical engineering, control theory and software engineering. The integration of artificial intelligence technologies is revolutionizing this domain, offering opportunities to enhance design processes, optimize performance, and leverage vast amounts of knowledge. However, human expertise remains essential in contextualizing information, considering trade-offs, and ensuring ethical and societal implications are taken into account. This paper therefore explores the existing literature regarding the application of artificial intelligence as a comprehensive database, decision support system, and modeling tool in mechatronic product development. It analyzes the benefits of artificial intelligence in enabling domain linking, replacing human expert knowledge, improving prediction quality, and enhancing intelligent control systems. For this purpose, a consideration of the V-cycle takes place, a standard in mechatronic product development. Along this, an initial assessment of the AI potential is shown and important categories of AI support are formed. This is followed by an examination of the literature with regard to these aspects. As a result, the integration of artificial intelligence in mechatronic product development opens new possibilities and transforms the way innovative mechatronic systems are conceived, designed, and deployed. However, the approaches are only taking place selectively, and a holistic view of the development processes and the potential for robust and context-sensitive artificial intelligence along them is still needed.
文摘Objective:The relationship between serum beta human chorionic gonadotropin(β-hCG)levels of patients(7 days after the transplantation of frozen-thawed embryos)and the pregnancy outcomes was investigated.Methods:This study was designed as a retrospective clinical trial of 366 women who underwent frozen-thawed embryo transfers(FETs)in artificial cycles.Patients were divided into three groups:clinical pregnancy group,biochemical pregnancy group,and non-pregnant group according to their pregnancy outcomes.Serumβ-hCG levels were tested on day 4,7,9,11 and 14 after FET.Results:In the clinical pregnancy group,the serumβ-hCG levels after 7-day post-transplantation were significantly elevated(16.20 IU/L vs.3.07 vs.0.1 IU/L;P<0.05)compared with the other two groups.Furthermore,it was found that Area Under Curve(AUC=0.96)was significant with cut-off value higher than 4.26 IU/L(sensitivity=92.3%,specificity=90.2%)to predict the clinical pregnancy outcomes in the receiver operating characteristic(ROC)analysis ofβ-hCG concentrations on day 7 of post-transplantation.Conclusion:Our results suggested that the elevated serumβ-hCG levels on day 7 of post-transplantation could predict the positive clinical pregnancy outcomes in artificial FET cycles.
基金The project supported by the National Natural Science Foundation of China (5016016) and Natural Science Foundation of AnhuiProvince(03043717)
文摘Based on the one-dimensional and unsteady-state Krogh model, this paper investigates mass transfer of artificial kidney under three blood cycle modes during the course of hemodialysis. The variations of the permeable solute clearance with increasing time and the dialysis time with increasing blood flux are simulated in detail,and then one optimal blood cycle mode is acquired. The results are very important to improve the clinical dialysis efficiency of artificial kidney.
文摘For the 22-year solar cycle oscillation there is no external time dependent source. A nonlinear oscillation, the solar cycle must be generated internally, and Babcock-Leighton models apply an artificial nonlinear source term that can simulate the observations—which leaves open the question of the actual source mechanism for the solar cycle. Addressing this question, we propose to take guidance from the wave mechanism that generates the 2-year Quasi-biennial Oscillation (QBO) in the Earth atmosphere. Upward propagating gravity waves, eastward and westward, deposit momentum to generate the observed zonal wind oscillation. On the Sun, helioseismology has provided a thorough understanding of the acoustic p-waves, which propagate down into the convective envelope guided by the increasing temperature and related propagation velocity. Near the tachocline with low turbulent viscosity, the waves propagating eastward and westward can produce an axisymmetric 22-year oscillation of the zonal flow velocities that can generate the magnetic solar dynamo. Following the Earth model, waves in opposite directions can generate in the Sun wind and magnetic field oscillations in opposite directions, the proposition of a potential solar cycle mechanism.
文摘Foreword ISO(the International Organization for Standardization)is a worldwide federation of national standards bodies(ISO member bodies).The work of preparing International Standards is normally carried out through ISO technical committees.Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee.
基金supported by the National Natural Science Foundation of China(51872027)the Fundamental Research Funds for the Central Universities(FRF-TP-20-014A2)。
文摘All-solid-state lithium batteries(ASSLBs) employing sulfide electrolyte and lithium(Li) anode have received increasing attention due to the intrinsic safety and high energy density.However,the thick electrolyte layer and lithium dendrites formed at the electrolyte/Li anode interface hinder the realization of high-performance ASSLBs.Herein,a novel membrane consisting of Li_(6)PS_(5) Cl(LPSCl),poly(ethylene oxide)(PEO) and Li-salt(LiTFSI) was prepared as sulfide-based composite solid electrolyte(LPSCl-PEO3-LiTFSI)(LPSCl:PEO=97:3 wt/wt;EO:Li=8:1 mol/mol),which delivers high ionic conductivity(1.1 × 10^(-3) S cm^(-1)) and wide electrochemical window(4.9 V vs.Li^(+)/Li) at 25 ℃.In addition,an ex-situ artificial solid electrolyte interphase(SEI) film enriched with LiF and Li3 N was designed as a protective layer on Li anode(Li(SEI)) to suppress the growth of lithium dendrites.Benefiting from the synergy of sulfide-based composite solid electrolyte and ex-situ artificial SEI,cells of S-CNTs/LPSCI-PEO3-LiTFSI/Li(SEI) and Al_(2)O_(3)@LiNi_(0.5)Co_(0.3)Mn_(0.2)O_(2)/LPSCl-PEO3-LiTFSI/Li(SEI) are assembled and both exhibit high initial discharge capacity of 1221.1 mAh g^(-1)(135.8 mAh g^(-1)) and enhanced cycling stability with 81.6% capacity retention over 200 cycles at 0.05 C(89.2% over 100 cycles at 0.1 C).This work provides a new insight into the synergy of composite solid electrolyte and artificial SEI for achieving high-performance ASSLBs.
基金This work was funded by the Deanship of Scientific Research at King Saud University through research Group Number RG-1436-040.
文摘Recent years witness a great deal of interest in artificial intelligence(AI)tools in the area of optimization.AI has developed a large number of tools to solve themost difficult search-and-optimization problems in computer science and operations research.Indeed,metaheuristic-based algorithms are a sub-field of AI.This study presents the use of themetaheuristic algorithm,that is,water cycle algorithm(WCA),in the transportation problem.A stochastic transportation problem is considered in which the parameters supply and demand are considered as random variables that follow the Weibull distribution.Since the parameters are stochastic,the corresponding constraints are probabilistic.They are converted into deterministic constraints using the stochastic programming approach.In this study,we propose evolutionary algorithms to handle the difficulties of the complex high-dimensional optimization problems.WCA is influenced by the water cycle process of how streams and rivers flow toward the sea(optimal solution).WCA is applied to the stochastic transportation problem,and obtained results are compared with that of the new metaheuristic optimization algorithm,namely the neural network algorithm which is inspired by the biological nervous system.It is concluded that WCA presents better results when compared with the neural network algorithm.
基金financial support of the University Internal Grant Agency of the Czech University of Life Sciences,Prague,Project CIGA No.20174304“Design of coating system and modification of artificial weathering test procedures applied on selected wood species”and project“Advanced research supporting the forestrywood-processing sector’s adaptation to global change and the 4th industrial revolution,”No.CZ.02.1.01/0.0/0.0/16_019/0000803 financed by OP RDE.
文摘The adhesion of coatings to wood is important for their long-term performance.In this study,the adhesion strength of water-based acrylate coatings used for wooden windows after exposure to artificial weathering(AW)and temperature cycling(TC)was investigated.The analysis of the adhesion quality of coatings was performed via a pull-off test and failure characteristics.The 3-layered and 4-layered white and brown acrylate dispersions from six different producers were compared and the effect of coating thickness on adhesion strength was investigated.The adhesion strength values proved to be very variable.After AW,the adhesion strength and its variability increased for all the samples.TC had no statistically significant effect on the adhesion strength values.White coating systems were initially characterized by lower adhesion strength,but after AW and TC,they reached higher adhesion strength values than brown ones.The overall highest adhesion after AW and TC was recorded for the coatings based on alkyd-acrylate hybrid basis(Producer 3),while the lowest adhesion variability after AW was measured for one type of tested acrylate coating(Producer 4).The effect of different layering on adhesion strength was not demonstrated in this study.
文摘Objective To observe the clinical efficacy of acupuncture and moxibustion in treatment of functional amenorrhea by establishing artificial cycle.Method One hundred and twelve eligible patients with functional amenorrhea were divided into an acupuncture-moxibustion group(64 cases) and a western medication group(48 cases) by adopting random method.According to the pattern differentiation of amenorrhea of traditional Chinese medicine,the patients in the acupuncture-moxibustion group were classified into two types:amenorrhea due to blood depletion and amenorrhea due to stagnation of blood.For patients with amenorrhea due to blood depletion,Guanyuan(关元 CV4),Zhongji(中极CV 3),GuiTlai(归来ST 29),Geshu(膈俞 BL 17),Ganshu(肝俞BL 18),Pishu(脾俞 BL 20) and Shenshu(肾俞 BL 23) were selected.At first,BL 17,BL 18,BL 20 and BL 23 were needled;after deqi,reinforcing method was applied,and the needles were not retained.Then,warmingneedle moxibustion was applied at CV 4,CV 3 and ST 29,and the needles were retained for 30 min.For patients with amenorrhea due to stagnation of blood,CV 3,Qihai(气海CV 6),Xuehai(血海 SP 10),Sanyinjiao(三阴交 SP 6)and Xingjian(行间 LR 2) were selected,reducing method was applied,and the needles were retained for 30 min.The treatment was performed once a day,and treatment for 15 consecutive days were the 1st cycle.The 2nd and3 rd cycles started from the 5th day of menstruation(for the patients still not menstruating,the 2nd and 3rd cycles started from the 29 th and 57 th days since the 1st day of treatment),and the treatment lasted for 15 days.Three cycles were needed.In the western medicine group,estrogen-progestogen was taken orally for 21 days(one cycle) to establish a artificial cycle.The levels of FSH and LH were tested and compared on the 3rd day of menstruation before treatment and after the 3rd cycle of treatment,and the adverse effects were analyzed statistically.Follow-up visit was conducted for the patients after treatment for three cycles,and the recurrence rate was calculated.Result The levels of FSH and LH of patients with functional amenorrhea were enhanced significantly through establishing artificial cycle by acupuncture and moxibustion.There was no significant difference between the acupuncture-moxibustion group and the western medication group in effective rate(P〉0.05);but the adverse effect rate(1.49%) and recurrence rate(25.0%) of the acupuncture-moxibustion group were lower than that of the western medication group(with the adverse effect rate of 4.14%,and recurrence rate of 69.8%)(both P〈0.05).Conclusion The levels of FSH and LH of patients with functional amenorrhea can be enhanced significantly through establishing artificial cycle by acupuncture and moxibustion.The efficacy of acupuncture and moxibustion in treatment of functional amenorrhea by establishing artificial cycle is equivalent to that of oral administration of estrogen-progestogen in treatment of functional amenorrhea by establishing artificial cycle,but the adverse effect rate and recurrence rate of acupuncture and moxibustion group are lower.
基金the Support Plan Projects of Science and Technology Department of Guizhou Province [No.(2021)YB453]。
文摘Photosynthesis is the most important biochemical reaction on Earth. It has co-evolved and developed with the Earth, driving the biogeochemical cycle of all elements on the planet and serving as the only chemical process in nature that can convert light energy into chemical energy. Some heavy oxygen isotopic(^(18)O) labeling experiments have"conclusively" demonstrated that the oxygen released by photosynthesis comes only from water and are written into textbooks. However, it is not difficult to find that bicarbonate has never been excluded from the direct substrate of photosynthesis from beginning to end during the history of photosynthesis research. No convincing mechanism can be used to explain photosynthetic oxygen evolution solely from water photolysis. The bicarbonate effect, the Dole effect, the thermodynamic convenience of bicarbonate photolysis, the crystal structure characteristics of photosystem Ⅱ, and the reinterpretation of heavy oxygen isotopic labeling(^(18)O)experiments all indicate that the photosynthetic oxygen evolution does not exclude the important role and contribution of bicarbonate photolysis. The recently proposed view that bicarbonate photolysis is the premise of water photolysis, bicarbonate photolysis and water photolysis work together with a 1:1(mol/mol) stoichiometric relationship, and the stoichiometric relationship between oxygen and carbon dioxide released during photosynthetic oxygen evolution is also 1:1, has excellent applicability and objectivity, which can logically and reasonably explain the precise coordination between light and dark reactions during photosynthesis, the bicarbonate effect, the Dole effect, the Kok cycle and the neutrality of water and carbon in nature.This is of great significance for constructing the bionic artificial photosynthetic reactors and scientifically answering the question of the source of elemental stoichiometric relationships in nature.