Recent advancements in science and technology,coupled with the proliferation of data,have also urged laboratory medicine to integrate with the era of artificial intelligence(AI)and machine learning(ML).In the current ...Recent advancements in science and technology,coupled with the proliferation of data,have also urged laboratory medicine to integrate with the era of artificial intelligence(AI)and machine learning(ML).In the current practices of evidencebased medicine,the laboratory tests analysing disease patterns through the association rule mining(ARM)have emerged as a modern tool for the risk assessment and the disease stratification,with the potential to reduce cardiovascular disease(CVD)mortality.CVDs are the well recognised leading global cause of mortality with the higher fatality rates in the Indian population due to associated factors like hypertension,diabetes,and lifestyle choices.AI-driven algorithms have offered deep insights in this field while addressing various challenges such as healthcare systems grappling with the physician shortages.Personalized medicine,well driven by the big data necessitates the integration of ML techniques and high-quality electronic health records to direct the meaningful outcome.These technological advancements enhance the computational analyses for both research and clinical practice.ARM plays a pivotal role by uncovering meaningful relationships within databases,aiding in patient survival prediction and risk factor identification.AI potential in laboratory medicine is vast and it must be cautiously integrated while considering potential ethical,legal,and privacy concerns.Thus,an AI ethics framework is essential to guide its responsible use.Aligning AI algorithms with existing lab practices,promoting education among healthcare professionals,and fostering careful integration into clinical settings are imperative for harnessing the benefits of this transformative technology.展开更多
This article delves into the intricate relationship between big data, cloud computing, and artificial intelligence, shedding light on their fundamental attributes and interdependence. It explores the seamless amalgama...This article delves into the intricate relationship between big data, cloud computing, and artificial intelligence, shedding light on their fundamental attributes and interdependence. It explores the seamless amalgamation of AI methodologies within cloud computing and big data analytics, encompassing the development of a cloud computing framework built on the robust foundation of the Hadoop platform, enriched by AI learning algorithms. Additionally, it examines the creation of a predictive model empowered by tailored artificial intelligence techniques. Rigorous simulations are conducted to extract valuable insights, facilitating method evaluation and performance assessment, all within the dynamic Hadoop environment, thereby reaffirming the precision of the proposed approach. The results and analysis section reveals compelling findings derived from comprehensive simulations within the Hadoop environment. These outcomes demonstrate the efficacy of the Sport AI Model (SAIM) framework in enhancing the accuracy of sports-related outcome predictions. Through meticulous mathematical analyses and performance assessments, integrating AI with big data emerges as a powerful tool for optimizing decision-making in sports. The discussion section extends the implications of these results, highlighting the potential for SAIM to revolutionize sports forecasting, strategic planning, and performance optimization for players and coaches. The combination of big data, cloud computing, and AI offers a promising avenue for future advancements in sports analytics. This research underscores the synergy between these technologies and paves the way for innovative approaches to sports-related decision-making and performance enhancement.展开更多
Crop improvement is crucial for addressing the global challenges of food security and sustainable agriculture.Recent advancements in high-throughput phenotyping(HTP)technologies and artificial intelligence(AI)have rev...Crop improvement is crucial for addressing the global challenges of food security and sustainable agriculture.Recent advancements in high-throughput phenotyping(HTP)technologies and artificial intelligence(AI)have revolutionized the field,enabling rapid and accurate assessment of crop traits on a large scale.The integration of AI and machine learning algorithms with HTP data has unlocked new opportunities for crop improvement.AI algorithms can analyze and interpret large datasets,and extract meaningful patterns and correlations between phenotypic traits and genetic factors.These technologies have the potential to revolutionize plant breeding programs by providing breeders with efficient and accurate tools for trait selection,thereby reducing the time and cost required for variety development.However,further research and collaboration are needed to overcome the existing challenges and fully unlock the power of HTP and AI in crop improvement.By leveraging AI algorithms,researchers can efficiently analyze phenotypic data,uncover complex patterns,and establish predictive models that enable precise trait selection and crop breeding.The aim of this review is to explore the transformative potential of integrating HTP and AI in crop improvement.This review will encompass an in-depth analysis of recent advances and applications,highlighting the numerous benefits and challenges associated with HTP and AI.展开更多
Explainable Artificial Intelligence(XAI)has an advanced feature to enhance the decision-making feature and improve the rule-based technique by using more advanced Machine Learning(ML)and Deep Learning(DL)based algorit...Explainable Artificial Intelligence(XAI)has an advanced feature to enhance the decision-making feature and improve the rule-based technique by using more advanced Machine Learning(ML)and Deep Learning(DL)based algorithms.In this paper,we chose e-healthcare systems for efficient decision-making and data classification,especially in data security,data handling,diagnostics,laboratories,and decision-making.Federated Machine Learning(FML)is a new and advanced technology that helps to maintain privacy for Personal Health Records(PHR)and handle a large amount of medical data effectively.In this context,XAI,along with FML,increases efficiency and improves the security of e-healthcare systems.The experiments show efficient system performance by implementing a federated averaging algorithm on an open-source Federated Learning(FL)platform.The experimental evaluation demonstrates the accuracy rate by taking epochs size 5,batch size 16,and the number of clients 5,which shows a higher accuracy rate(19,104).We conclude the paper by discussing the existing gaps and future work in an e-healthcare system.展开更多
Escalating cyber security threats and the increased use of Internet of Things(IoT)devices require utilisation of the latest technologies available to supply adequate protection.The aim of Intrusion Detection Systems(I...Escalating cyber security threats and the increased use of Internet of Things(IoT)devices require utilisation of the latest technologies available to supply adequate protection.The aim of Intrusion Detection Systems(IDS)is to prevent malicious attacks that corrupt operations and interrupt data flow,which might have significant impact on critical industries and infrastructure.This research examines existing IDS,based on Artificial Intelligence(AI)for IoT devices,methods,and techniques.The contribution of this study consists of identification of the most effective IDS systems in terms of accuracy,precision,recall and F1-score;this research also considers training time.Results demonstrate that Graph Neural Networks(GNN)have several benefits over other traditional AI frameworks through their ability to achieve in excess of 99%accuracy in a relatively short training time,while also capable of learning from network traffic the inherent characteristics of different cyber-attacks.These findings identify the GNN(a Deep Learning AI method)as the most efficient IDS system.The novelty of this research lies also in the linking between high yielding AI-based IDS algorithms and the AI-based learning approach for data privacy protection.This research recommends Federated Learning(FL)as the AI training model,which increases data privacy protection and reduces network data flow,resulting in a more secure and efficient IDS solution.展开更多
BACKGROUND Artificial intelligence(AI)is a branch of computer science that allows machines to analyze large datasets,learn from patterns,and perform tasks that would otherwise require human intelligence and supervisio...BACKGROUND Artificial intelligence(AI)is a branch of computer science that allows machines to analyze large datasets,learn from patterns,and perform tasks that would otherwise require human intelligence and supervision.It is an emerging tool in pediatric orthopedic surgery,with various promising applications.An evaluation of the current awareness and perceptions among pediatric orthopedic surgeons is necessary to facilitate AI utilization and highlight possible areas of concern.AIM To assess the awareness and perceptions of AI among pediatric orthopedic surgeons.METHODS This cross-sectional observational study was conducted using a structured questionnaire designed using QuestionPro online survey software to collect quantitative and qualitative data.One hundred and twenty-eight pediatric orthopedic surgeons affiliated with two groups:Pediatric Orthopedic Chapter of Saudi Orthopedics Association and Middle East Pediatric Orthopedic Society in Gulf Cooperation Council Countries were surveyed.RESULTS The pediatric orthopedic surgeons surveyed had a low level of familiarity with AI,with more than 60%of respondents rating themselves as being slightly familiar or not at all familiar.The most positively rated aspect of AI applications for pediatric orthopedic surgery was their ability to save time and enhance productivity,with 61.97%agreeing or strongly agreeing,and only 4.23%disagreeing or strongly disagreeing.Our participants also placed a high priority on patient privacy and data security,with over 90%rating them as quite important or highly important.Additional bivariate analyses suggested that physicians with a higher awareness of AI also have a more positive perception.CONCLUSION Our study highlights a lack of familiarity among pediatric orthopedic surgeons towards AI,and suggests a need for enhanced education and regulatory frameworks to ensure the safe adoption of AI.展开更多
Mechatronic product development is a complex and multidisciplinary field that encompasses various domains, including, among others, mechanical engineering, electrical engineering, control theory and software engineeri...Mechatronic product development is a complex and multidisciplinary field that encompasses various domains, including, among others, mechanical engineering, electrical engineering, control theory and software engineering. The integration of artificial intelligence technologies is revolutionizing this domain, offering opportunities to enhance design processes, optimize performance, and leverage vast amounts of knowledge. However, human expertise remains essential in contextualizing information, considering trade-offs, and ensuring ethical and societal implications are taken into account. This paper therefore explores the existing literature regarding the application of artificial intelligence as a comprehensive database, decision support system, and modeling tool in mechatronic product development. It analyzes the benefits of artificial intelligence in enabling domain linking, replacing human expert knowledge, improving prediction quality, and enhancing intelligent control systems. For this purpose, a consideration of the V-cycle takes place, a standard in mechatronic product development. Along this, an initial assessment of the AI potential is shown and important categories of AI support are formed. This is followed by an examination of the literature with regard to these aspects. As a result, the integration of artificial intelligence in mechatronic product development opens new possibilities and transforms the way innovative mechatronic systems are conceived, designed, and deployed. However, the approaches are only taking place selectively, and a holistic view of the development processes and the potential for robust and context-sensitive artificial intelligence along them is still needed.展开更多
People are enormously nervous about Artificial Intelligence.Although many are constructive and want to move forward,many want more answers from a business perspective,a legal perspective,and an economic perspective.Ju...People are enormously nervous about Artificial Intelligence.Although many are constructive and want to move forward,many want more answers from a business perspective,a legal perspective,and an economic perspective.Just today,another class action lawsuit was filed in California.This paper will address concerns and hopefully help you understand Artificial Intelligence better.From these perspectives,you may decide how you feel and think about Artificial Intelligence based on the information presented in this paper and other research.展开更多
Customer churns remains a key focus in this research, using artificial intelligence-based technique of machine learning. Research is based on the feature-based analysis four main features were used that are selected o...Customer churns remains a key focus in this research, using artificial intelligence-based technique of machine learning. Research is based on the feature-based analysis four main features were used that are selected on the basis of our customer churn to deduct the meaning full analysis of the data set. Data-set is taken from the Kaggle that is about the fine food review having more than half a million records in it. This research remains on feature based analysis that is further concluded using confusion matrix. In this research we are using confusion matrix to conclude the customer churn results. Such specific analysis helps e-commerce business for real time growth in their specific products focusing more sales and to analyze which product is getting outage. Moreover, after applying the techniques, Support Vector Machine and K-Nearest Neighbour perform better than the random forest in this particular scenario. Using confusion matrix for obtaining the results three things are obtained that are precision, recall and accuracy. The result explains feature-based analysis on fine food reviews, Amazon at customer churn Support Vector Machine performed better as in overall comparison.展开更多
Artificial Intelligence(AI)has gained popularity for the containment of COVID-19 pandemic applications.Several AI techniques provide efficient mechanisms for handling pandemic situations.AI methods,protocols,data sets...Artificial Intelligence(AI)has gained popularity for the containment of COVID-19 pandemic applications.Several AI techniques provide efficient mechanisms for handling pandemic situations.AI methods,protocols,data sets,and various validation mechanisms empower the users towards proper decision-making and procedures to handle the situation.Despite so many tools,there still exist conditions in which AI must go a long way.To increase the adaptability and potential of these techniques,a combination of AI and Bigdata is currently gaining popularity.This paper surveys and analyzes the methods within the various computational paradigms used by different researchers and national governments,such as China and South Korea,to fight against this pandemic.The process of vaccine development requires multiple medical experiments.This process requires analyzing datasets from different parts of the world.Deep learning and the Internet of Things(IoT)revolutionized the field of disease diagnosis and disease prediction.The accurate observations from different datasets across the world empowered the process of drug development and drug repurposing.To overcome the issues generated by the pandemic,using such sophisticated computing paradigms such as AI,Machine Learning(ML),deep learning,Robotics and Bigdata is essential.展开更多
Biomedical data classification has become a hot research topic in recent years,thanks to the latest technological advancements made in healthcare.Biome-dical data is usually examined by physicians for decision making ...Biomedical data classification has become a hot research topic in recent years,thanks to the latest technological advancements made in healthcare.Biome-dical data is usually examined by physicians for decision making process in patient treatment.Since manual diagnosis is a tedious and time consuming task,numerous automated models,using Artificial Intelligence(AI)techniques,have been presented so far.With this motivation,the current research work presents a novel Biomedical Data Classification using Cat and Mouse Based Optimizer with AI(BDC-CMBOAI)technique.The aim of the proposed BDC-CMBOAI technique is to determine the occurrence of diseases using biomedical data.Besides,the proposed BDC-CMBOAI technique involves the design of Cat and Mouse Optimizer-based Feature Selection(CMBO-FS)technique to derive a useful subset of features.In addition,Ridge Regression(RR)model is also utilized as a classifier to identify the existence of disease.The novelty of the current work is its designing of CMBO-FS model for data classification.Moreover,CMBO-FS technique is used to get rid of unwanted features and boosts the classification accuracy.The results of the experimental analysis accomplished by BDC-CMBOAI technique on benchmark medical dataset established the supremacy of the proposed technique under different evaluation measures.展开更多
Big data has had significant impacts on our lives,economies,academia and industries over the past decade.The current equations are:What is the future of big data?What era do we live in?This article addresses these que...Big data has had significant impacts on our lives,economies,academia and industries over the past decade.The current equations are:What is the future of big data?What era do we live in?This article addresses these questions by looking at meta as an operation and argues that we are living in the era of big intelligence through analyzing from meta(big data)to big intelligence.More specifically,this article will analyze big data from an evolutionary perspective.The article overviews data,information,knowledge,and intelligence(DIKI)and reveals their relationships.After analyzing meta as an operation,this article explores Meta(DIKE)and its relationship.It reveals 5 Bigs consisting of big data,big information,big knowledge,big intelligence and big analytics.Applying meta on 5 Bigs,this article infers that 4 Big Data 4.0=meta(big data)=big intelligence.This article analyzes how intelligent big analytics support big intelligence.The proposed approach in this research might facilitate the research and development of big data,big data analytics,business intelligence,artificial intelligence,and data science.展开更多
As an emerging hot technology,smart grids(SGs)are being employed in many fields,such as smart homes and smart cities.Moreover,the application of artificial intelligence(AI)in SGs has promoted the development of the po...As an emerging hot technology,smart grids(SGs)are being employed in many fields,such as smart homes and smart cities.Moreover,the application of artificial intelligence(AI)in SGs has promoted the development of the power industry.However,as users’demands for electricity increase,traditional centralized power trading is unable to well meet the user demands and an increasing number of small distributed generators are being employed in trading activities.This not only leads to numerous security risks for the trading data but also has a negative impact on the cost of power generation,electrical security,and other aspects.Accordingly,this study proposes a distributed power trading scheme based on blockchain and AI.To protect the legitimate rights and interests of consumers and producers,credibility is used as an indicator to restrict untrustworthy behavior.Simultaneously,the reliability and communication capabilities of nodes are considered in block verification to improve the transaction confirmation efficiency,and a weighted communication tree construction algorithm is designed to achieve superior data forwarding.Finally,AI sensors are set up in power equipment to detect electricity generation and transmission,which alert users when security hazards occur,such as thunderstorms or typhoons.The experimental results show that the proposed scheme can not only improve the trading security but also reduce system communication delays.展开更多
Computational psychiatry is an emerging field that not only explores the biological basis of mental illness but also considers the diagnoses and identifies the underlying mechanisms.One of the key strengths of computa...Computational psychiatry is an emerging field that not only explores the biological basis of mental illness but also considers the diagnoses and identifies the underlying mechanisms.One of the key strengths of computational psychiatry is that it may identify patterns in large datasets that are not easily identifiable.This may help researchers develop more effective treatments and interventions for mental health problems.This paper is a narrative review that reviews the literature and produces an artificial intelligence ecosystem for computational psychiatry.The artificial intelligence ecosystem for computational psychiatry includes data acquisition,preparation,modeling,application,and evaluation.This approach allows researchers to integrate data from a variety of sources,such as brain imaging,genetics,and behavioral experiments,to obtain a more complete understanding of mental health conditions.Through the process of data preprocessing,training,and testing,the data that are required for model building can be prepared.By using machine learning,neural networks,artificial intelligence,and other methods,researchers have been able to develop diagnostic tools that can accurately identify mental health conditions based on a patient’s symptoms and other factors.Despite the continuous development and breakthrough of computational psychiatry,it has not yet influenced routine clinical practice and still faces many challenges,such as data availability and quality,biological risks,equity,and data protection.As we move progress in this field,it is vital to ensure that computational psychiatry remains accessible and inclusive so that all researchers may contribute to this significant and exciting field.展开更多
The fifth generation (5G) networks will support the rapid emergence of Internet of Things (IoT) devices operating in a heterogeneous network (HetNet) system. These 5G-enabled IoT devices will result in a surge in data...The fifth generation (5G) networks will support the rapid emergence of Internet of Things (IoT) devices operating in a heterogeneous network (HetNet) system. These 5G-enabled IoT devices will result in a surge in data traffic for Mobile Network Operators (MNOs) to handle. At the same time, MNOs are preparing for a paradigm shift to decouple the control and forwarding plane in a Software-Defined Networking (SDN) architecture. Artificial Intelligence powered Self-Organising Networks (AI-SON) can fit into the SDN architecture by providing prediction and recommender systems to minimise costs in supporting the MNO’s infrastructure. This paper presents a review report on AI-SON frameworks in 5G and SDN. The review considers the dynamic deployment and functions of the AI-SON frameworks, especially for SDN support and applications. Each module in the frameworks was discussed to ascertain its relevance based on the context of AI-SON and SDN integration. After examining each framework, the identified gaps are summarised as open issues for future works.展开更多
1 Introduction Information technology has been playing an ever-increasing role in geoscience.Sphisicated database platforms are essential for geological data storage,analysis and exchange of Big Data(Feblowitz,2013;Zh...1 Introduction Information technology has been playing an ever-increasing role in geoscience.Sphisicated database platforms are essential for geological data storage,analysis and exchange of Big Data(Feblowitz,2013;Zhang et al.,2016;Teng et al.,2016;Tian and Li,2018).The United States has built an information-sharing platform for state-owned scientific data as a national strategy.展开更多
In present digital era,data science techniques exploit artificial intelligence(AI)techniques who start and run small and medium-sized enterprises(SMEs)to have an impact and develop their businesses.Data science integr...In present digital era,data science techniques exploit artificial intelligence(AI)techniques who start and run small and medium-sized enterprises(SMEs)to have an impact and develop their businesses.Data science integrates the conventions of econometrics with the technological elements of data science.It make use of machine learning(ML),predictive and prescriptive analytics to effectively understand financial data and solve related problems.Smart technologies for SMEs enable allows the firm to get smarter with their processes and offers efficient operations.At the same time,it is needed to develop an effective tool which can assist small to medium sized enterprises to forecast business failure as well as financial crisis.AI becomes a familiar tool for several businesses due to the fact that it concentrates on the design of intelligent decision making tools to solve particular real time problems.With this motivation,this paper presents a new AI based optimal functional link neural network(FLNN)based financial crisis prediction(FCP)model forSMEs.The proposed model involves preprocessing,feature selection,classification,and parameter tuning.At the initial stage,the financial data of the enterprises are collected and are preprocessed to enhance the quality of the data.Besides,a novel chaotic grasshopper optimization algorithm(CGOA)based feature selection technique is applied for the optimal selection of features.Moreover,functional link neural network(FLNN)model is employed for the classification of the feature reduced data.Finally,the efficiency of theFLNNmodel can be improvised by the use of cat swarm optimizer(CSO)algorithm.A detailed experimental validation process takes place on Polish dataset to ensure the performance of the presented model.The experimental studies demonstrated that the CGOA-FLNN-CSO model has accomplished maximum prediction accuracy of 98.830%,92.100%,and 95.220%on the applied Polish dataset Year I-III respectively.展开更多
In recent times,sixth generation(6G)communication technologies have become a hot research topic because of maximum throughput and low delay services for mobile users.It encompasses several heterogeneous resource and c...In recent times,sixth generation(6G)communication technologies have become a hot research topic because of maximum throughput and low delay services for mobile users.It encompasses several heterogeneous resource and communication standard in ensuring incessant availability of service.At the same time,the development of 6G enables the Unmanned Aerial Vehicles(UAVs)in offering cost and time-efficient solution to several applications like healthcare,surveillance,disaster management,etc.In UAV networks,energy efficiency and data collection are considered the major process for high quality network communication.But these procedures are found to be challenging because of maximum mobility,unstable links,dynamic topology,and energy restricted UAVs.These issues are solved by the use of artificial intelligence(AI)and energy efficient clustering techniques for UAVs in the 6G environment.With this inspiration,this work designs an artificial intelligence enabled cooperative cluster-based data collection technique for unmanned aerial vehicles(AECCDC-UAV)in 6G environment.The proposed AECCDC-UAV technique purposes for dividing the UAV network as to different clusters and allocate a cluster head(CH)to each cluster in such a way that the energy consumption(ECM)gets minimized.The presented AECCDC-UAV technique involves a quasi-oppositional shuffled shepherd optimization(QOSSO)algorithm for selecting the CHs and construct clusters.The QOSSO algorithm derives a fitness function involving three input parameters residual energy of UAVs,distance to neighboring UAVs,and degree of UAVs.The performance of the AECCDC-UAV technique is validated in many aspects and the obtained experimental values demonstration promising results over the recent state of art methods.展开更多
Mobile edge computing(MEC)provides effective cloud services and functionality at the edge device,to improve the quality of service(QoS)of end users by offloading the high computation tasks.Currently,the introduction o...Mobile edge computing(MEC)provides effective cloud services and functionality at the edge device,to improve the quality of service(QoS)of end users by offloading the high computation tasks.Currently,the introduction of deep learning(DL)and hardware technologies paves amethod in detecting the current traffic status,data offloading,and cyberattacks in MEC.This study introduces an artificial intelligence with metaheuristic based data offloading technique for Secure MEC(AIMDO-SMEC)systems.The proposed AIMDO-SMEC technique incorporates an effective traffic prediction module using Siamese Neural Networks(SNN)to determine the traffic status in the MEC system.Also,an adaptive sampling cross entropy(ASCE)technique is utilized for data offloading in MEC systems.Moreover,the modified salp swarm algorithm(MSSA)with extreme gradient boosting(XGBoost)technique was implemented to identification and classification of cyberattack that exist in the MEC systems.For examining the enhanced outcomes of the AIMDO-SMEC technique,a comprehensive experimental analysis is carried out and the results demonstrated the enhanced outcomes of the AIMDOSMEC technique with the minimal completion time of tasks(CTT)of 0.680.展开更多
The implementation of artificial intelligence(AI)in a smart society,in which the analysis of human habits is mandatory,requires automated data scheduling and analysis using smart applications,a smart infrastructure,sm...The implementation of artificial intelligence(AI)in a smart society,in which the analysis of human habits is mandatory,requires automated data scheduling and analysis using smart applications,a smart infrastructure,smart systems,and a smart network.In this context,which is characterized by a large gap between training and operative processes,a dedicated method is required to manage and extract the massive amount of data and the related information mining.The method presented in this work aims to reduce this gap with near-zero-failure advanced diagnostics(AD)for smart management,which is exploitable in any context of Society 5.0,thus reducing the risk factors at all management levels and ensuring quality and sustainability.We have also developed innovative applications for a humancentered management system to support scheduling in the maintenance of operative processes,for reducing training costs,for improving production yield,and for creating a human–machine cyberspace for smart infrastructure design.The results obtained in 12 international companies demonstrate a possible global standardization of operative processes,leading to the design of a near-zero-failure intelligent system that is able to learn and upgrade itself.Our new method provides guidance for selecting the new generation of intelligent manufacturing and smart systems in order to optimize human–machine interactions,with the related smart maintenance and education.展开更多
文摘Recent advancements in science and technology,coupled with the proliferation of data,have also urged laboratory medicine to integrate with the era of artificial intelligence(AI)and machine learning(ML).In the current practices of evidencebased medicine,the laboratory tests analysing disease patterns through the association rule mining(ARM)have emerged as a modern tool for the risk assessment and the disease stratification,with the potential to reduce cardiovascular disease(CVD)mortality.CVDs are the well recognised leading global cause of mortality with the higher fatality rates in the Indian population due to associated factors like hypertension,diabetes,and lifestyle choices.AI-driven algorithms have offered deep insights in this field while addressing various challenges such as healthcare systems grappling with the physician shortages.Personalized medicine,well driven by the big data necessitates the integration of ML techniques and high-quality electronic health records to direct the meaningful outcome.These technological advancements enhance the computational analyses for both research and clinical practice.ARM plays a pivotal role by uncovering meaningful relationships within databases,aiding in patient survival prediction and risk factor identification.AI potential in laboratory medicine is vast and it must be cautiously integrated while considering potential ethical,legal,and privacy concerns.Thus,an AI ethics framework is essential to guide its responsible use.Aligning AI algorithms with existing lab practices,promoting education among healthcare professionals,and fostering careful integration into clinical settings are imperative for harnessing the benefits of this transformative technology.
文摘This article delves into the intricate relationship between big data, cloud computing, and artificial intelligence, shedding light on their fundamental attributes and interdependence. It explores the seamless amalgamation of AI methodologies within cloud computing and big data analytics, encompassing the development of a cloud computing framework built on the robust foundation of the Hadoop platform, enriched by AI learning algorithms. Additionally, it examines the creation of a predictive model empowered by tailored artificial intelligence techniques. Rigorous simulations are conducted to extract valuable insights, facilitating method evaluation and performance assessment, all within the dynamic Hadoop environment, thereby reaffirming the precision of the proposed approach. The results and analysis section reveals compelling findings derived from comprehensive simulations within the Hadoop environment. These outcomes demonstrate the efficacy of the Sport AI Model (SAIM) framework in enhancing the accuracy of sports-related outcome predictions. Through meticulous mathematical analyses and performance assessments, integrating AI with big data emerges as a powerful tool for optimizing decision-making in sports. The discussion section extends the implications of these results, highlighting the potential for SAIM to revolutionize sports forecasting, strategic planning, and performance optimization for players and coaches. The combination of big data, cloud computing, and AI offers a promising avenue for future advancements in sports analytics. This research underscores the synergy between these technologies and paves the way for innovative approaches to sports-related decision-making and performance enhancement.
基金supported by a grant from the Standardization and Integration of Resources Information for Seed-cluster in Hub-Spoke Material Bank Program,Rural Development Administration,Republic of Korea(PJ01587004).
文摘Crop improvement is crucial for addressing the global challenges of food security and sustainable agriculture.Recent advancements in high-throughput phenotyping(HTP)technologies and artificial intelligence(AI)have revolutionized the field,enabling rapid and accurate assessment of crop traits on a large scale.The integration of AI and machine learning algorithms with HTP data has unlocked new opportunities for crop improvement.AI algorithms can analyze and interpret large datasets,and extract meaningful patterns and correlations between phenotypic traits and genetic factors.These technologies have the potential to revolutionize plant breeding programs by providing breeders with efficient and accurate tools for trait selection,thereby reducing the time and cost required for variety development.However,further research and collaboration are needed to overcome the existing challenges and fully unlock the power of HTP and AI in crop improvement.By leveraging AI algorithms,researchers can efficiently analyze phenotypic data,uncover complex patterns,and establish predictive models that enable precise trait selection and crop breeding.The aim of this review is to explore the transformative potential of integrating HTP and AI in crop improvement.This review will encompass an in-depth analysis of recent advances and applications,highlighting the numerous benefits and challenges associated with HTP and AI.
文摘Explainable Artificial Intelligence(XAI)has an advanced feature to enhance the decision-making feature and improve the rule-based technique by using more advanced Machine Learning(ML)and Deep Learning(DL)based algorithms.In this paper,we chose e-healthcare systems for efficient decision-making and data classification,especially in data security,data handling,diagnostics,laboratories,and decision-making.Federated Machine Learning(FML)is a new and advanced technology that helps to maintain privacy for Personal Health Records(PHR)and handle a large amount of medical data effectively.In this context,XAI,along with FML,increases efficiency and improves the security of e-healthcare systems.The experiments show efficient system performance by implementing a federated averaging algorithm on an open-source Federated Learning(FL)platform.The experimental evaluation demonstrates the accuracy rate by taking epochs size 5,batch size 16,and the number of clients 5,which shows a higher accuracy rate(19,104).We conclude the paper by discussing the existing gaps and future work in an e-healthcare system.
文摘Escalating cyber security threats and the increased use of Internet of Things(IoT)devices require utilisation of the latest technologies available to supply adequate protection.The aim of Intrusion Detection Systems(IDS)is to prevent malicious attacks that corrupt operations and interrupt data flow,which might have significant impact on critical industries and infrastructure.This research examines existing IDS,based on Artificial Intelligence(AI)for IoT devices,methods,and techniques.The contribution of this study consists of identification of the most effective IDS systems in terms of accuracy,precision,recall and F1-score;this research also considers training time.Results demonstrate that Graph Neural Networks(GNN)have several benefits over other traditional AI frameworks through their ability to achieve in excess of 99%accuracy in a relatively short training time,while also capable of learning from network traffic the inherent characteristics of different cyber-attacks.These findings identify the GNN(a Deep Learning AI method)as the most efficient IDS system.The novelty of this research lies also in the linking between high yielding AI-based IDS algorithms and the AI-based learning approach for data privacy protection.This research recommends Federated Learning(FL)as the AI training model,which increases data privacy protection and reduces network data flow,resulting in a more secure and efficient IDS solution.
文摘BACKGROUND Artificial intelligence(AI)is a branch of computer science that allows machines to analyze large datasets,learn from patterns,and perform tasks that would otherwise require human intelligence and supervision.It is an emerging tool in pediatric orthopedic surgery,with various promising applications.An evaluation of the current awareness and perceptions among pediatric orthopedic surgeons is necessary to facilitate AI utilization and highlight possible areas of concern.AIM To assess the awareness and perceptions of AI among pediatric orthopedic surgeons.METHODS This cross-sectional observational study was conducted using a structured questionnaire designed using QuestionPro online survey software to collect quantitative and qualitative data.One hundred and twenty-eight pediatric orthopedic surgeons affiliated with two groups:Pediatric Orthopedic Chapter of Saudi Orthopedics Association and Middle East Pediatric Orthopedic Society in Gulf Cooperation Council Countries were surveyed.RESULTS The pediatric orthopedic surgeons surveyed had a low level of familiarity with AI,with more than 60%of respondents rating themselves as being slightly familiar or not at all familiar.The most positively rated aspect of AI applications for pediatric orthopedic surgery was their ability to save time and enhance productivity,with 61.97%agreeing or strongly agreeing,and only 4.23%disagreeing or strongly disagreeing.Our participants also placed a high priority on patient privacy and data security,with over 90%rating them as quite important or highly important.Additional bivariate analyses suggested that physicians with a higher awareness of AI also have a more positive perception.CONCLUSION Our study highlights a lack of familiarity among pediatric orthopedic surgeons towards AI,and suggests a need for enhanced education and regulatory frameworks to ensure the safe adoption of AI.
文摘Mechatronic product development is a complex and multidisciplinary field that encompasses various domains, including, among others, mechanical engineering, electrical engineering, control theory and software engineering. The integration of artificial intelligence technologies is revolutionizing this domain, offering opportunities to enhance design processes, optimize performance, and leverage vast amounts of knowledge. However, human expertise remains essential in contextualizing information, considering trade-offs, and ensuring ethical and societal implications are taken into account. This paper therefore explores the existing literature regarding the application of artificial intelligence as a comprehensive database, decision support system, and modeling tool in mechatronic product development. It analyzes the benefits of artificial intelligence in enabling domain linking, replacing human expert knowledge, improving prediction quality, and enhancing intelligent control systems. For this purpose, a consideration of the V-cycle takes place, a standard in mechatronic product development. Along this, an initial assessment of the AI potential is shown and important categories of AI support are formed. This is followed by an examination of the literature with regard to these aspects. As a result, the integration of artificial intelligence in mechatronic product development opens new possibilities and transforms the way innovative mechatronic systems are conceived, designed, and deployed. However, the approaches are only taking place selectively, and a holistic view of the development processes and the potential for robust and context-sensitive artificial intelligence along them is still needed.
文摘People are enormously nervous about Artificial Intelligence.Although many are constructive and want to move forward,many want more answers from a business perspective,a legal perspective,and an economic perspective.Just today,another class action lawsuit was filed in California.This paper will address concerns and hopefully help you understand Artificial Intelligence better.From these perspectives,you may decide how you feel and think about Artificial Intelligence based on the information presented in this paper and other research.
文摘Customer churns remains a key focus in this research, using artificial intelligence-based technique of machine learning. Research is based on the feature-based analysis four main features were used that are selected on the basis of our customer churn to deduct the meaning full analysis of the data set. Data-set is taken from the Kaggle that is about the fine food review having more than half a million records in it. This research remains on feature based analysis that is further concluded using confusion matrix. In this research we are using confusion matrix to conclude the customer churn results. Such specific analysis helps e-commerce business for real time growth in their specific products focusing more sales and to analyze which product is getting outage. Moreover, after applying the techniques, Support Vector Machine and K-Nearest Neighbour perform better than the random forest in this particular scenario. Using confusion matrix for obtaining the results three things are obtained that are precision, recall and accuracy. The result explains feature-based analysis on fine food reviews, Amazon at customer churn Support Vector Machine performed better as in overall comparison.
文摘Artificial Intelligence(AI)has gained popularity for the containment of COVID-19 pandemic applications.Several AI techniques provide efficient mechanisms for handling pandemic situations.AI methods,protocols,data sets,and various validation mechanisms empower the users towards proper decision-making and procedures to handle the situation.Despite so many tools,there still exist conditions in which AI must go a long way.To increase the adaptability and potential of these techniques,a combination of AI and Bigdata is currently gaining popularity.This paper surveys and analyzes the methods within the various computational paradigms used by different researchers and national governments,such as China and South Korea,to fight against this pandemic.The process of vaccine development requires multiple medical experiments.This process requires analyzing datasets from different parts of the world.Deep learning and the Internet of Things(IoT)revolutionized the field of disease diagnosis and disease prediction.The accurate observations from different datasets across the world empowered the process of drug development and drug repurposing.To overcome the issues generated by the pandemic,using such sophisticated computing paradigms such as AI,Machine Learning(ML),deep learning,Robotics and Bigdata is essential.
基金Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2022R203)Princess Nourah bint Abdulrahman University,Riyadh,Saudi ArabiaThe authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:22UQU4340237DSR03.
文摘Biomedical data classification has become a hot research topic in recent years,thanks to the latest technological advancements made in healthcare.Biome-dical data is usually examined by physicians for decision making process in patient treatment.Since manual diagnosis is a tedious and time consuming task,numerous automated models,using Artificial Intelligence(AI)techniques,have been presented so far.With this motivation,the current research work presents a novel Biomedical Data Classification using Cat and Mouse Based Optimizer with AI(BDC-CMBOAI)technique.The aim of the proposed BDC-CMBOAI technique is to determine the occurrence of diseases using biomedical data.Besides,the proposed BDC-CMBOAI technique involves the design of Cat and Mouse Optimizer-based Feature Selection(CMBO-FS)technique to derive a useful subset of features.In addition,Ridge Regression(RR)model is also utilized as a classifier to identify the existence of disease.The novelty of the current work is its designing of CMBO-FS model for data classification.Moreover,CMBO-FS technique is used to get rid of unwanted features and boosts the classification accuracy.The results of the experimental analysis accomplished by BDC-CMBOAI technique on benchmark medical dataset established the supremacy of the proposed technique under different evaluation measures.
基金This research is supported partially by the Papua New Guinea Science and Technology Secretariat(PNGSTS)under the project grant No.1-3962 PNGSTS.
文摘Big data has had significant impacts on our lives,economies,academia and industries over the past decade.The current equations are:What is the future of big data?What era do we live in?This article addresses these questions by looking at meta as an operation and argues that we are living in the era of big intelligence through analyzing from meta(big data)to big intelligence.More specifically,this article will analyze big data from an evolutionary perspective.The article overviews data,information,knowledge,and intelligence(DIKI)and reveals their relationships.After analyzing meta as an operation,this article explores Meta(DIKE)and its relationship.It reveals 5 Bigs consisting of big data,big information,big knowledge,big intelligence and big analytics.Applying meta on 5 Bigs,this article infers that 4 Big Data 4.0=meta(big data)=big intelligence.This article analyzes how intelligent big analytics support big intelligence.The proposed approach in this research might facilitate the research and development of big data,big data analytics,business intelligence,artificial intelligence,and data science.
基金supported by the National Natural Science Foundation of China with Grants 61771289 and 61832012the Natural Science Foundation of Shandong Province with Grants ZR2021QF050 and ZR2021MF075+3 种基金Shandong Natural Science Foundation Major Basic Research with Grant ZR2019ZD10Shandong Key Research and Development Program with Grant 2019GGX1050Shandong Major Agricultural Application Technology Innovation Project with Grant SD2019NJ007National Natural Science Foundation of Shandong Province Grants ZR2022MF304.
文摘As an emerging hot technology,smart grids(SGs)are being employed in many fields,such as smart homes and smart cities.Moreover,the application of artificial intelligence(AI)in SGs has promoted the development of the power industry.However,as users’demands for electricity increase,traditional centralized power trading is unable to well meet the user demands and an increasing number of small distributed generators are being employed in trading activities.This not only leads to numerous security risks for the trading data but also has a negative impact on the cost of power generation,electrical security,and other aspects.Accordingly,this study proposes a distributed power trading scheme based on blockchain and AI.To protect the legitimate rights and interests of consumers and producers,credibility is used as an indicator to restrict untrustworthy behavior.Simultaneously,the reliability and communication capabilities of nodes are considered in block verification to improve the transaction confirmation efficiency,and a weighted communication tree construction algorithm is designed to achieve superior data forwarding.Finally,AI sensors are set up in power equipment to detect electricity generation and transmission,which alert users when security hazards occur,such as thunderstorms or typhoons.The experimental results show that the proposed scheme can not only improve the trading security but also reduce system communication delays.
文摘Computational psychiatry is an emerging field that not only explores the biological basis of mental illness but also considers the diagnoses and identifies the underlying mechanisms.One of the key strengths of computational psychiatry is that it may identify patterns in large datasets that are not easily identifiable.This may help researchers develop more effective treatments and interventions for mental health problems.This paper is a narrative review that reviews the literature and produces an artificial intelligence ecosystem for computational psychiatry.The artificial intelligence ecosystem for computational psychiatry includes data acquisition,preparation,modeling,application,and evaluation.This approach allows researchers to integrate data from a variety of sources,such as brain imaging,genetics,and behavioral experiments,to obtain a more complete understanding of mental health conditions.Through the process of data preprocessing,training,and testing,the data that are required for model building can be prepared.By using machine learning,neural networks,artificial intelligence,and other methods,researchers have been able to develop diagnostic tools that can accurately identify mental health conditions based on a patient’s symptoms and other factors.Despite the continuous development and breakthrough of computational psychiatry,it has not yet influenced routine clinical practice and still faces many challenges,such as data availability and quality,biological risks,equity,and data protection.As we move progress in this field,it is vital to ensure that computational psychiatry remains accessible and inclusive so that all researchers may contribute to this significant and exciting field.
文摘The fifth generation (5G) networks will support the rapid emergence of Internet of Things (IoT) devices operating in a heterogeneous network (HetNet) system. These 5G-enabled IoT devices will result in a surge in data traffic for Mobile Network Operators (MNOs) to handle. At the same time, MNOs are preparing for a paradigm shift to decouple the control and forwarding plane in a Software-Defined Networking (SDN) architecture. Artificial Intelligence powered Self-Organising Networks (AI-SON) can fit into the SDN architecture by providing prediction and recommender systems to minimise costs in supporting the MNO’s infrastructure. This paper presents a review report on AI-SON frameworks in 5G and SDN. The review considers the dynamic deployment and functions of the AI-SON frameworks, especially for SDN support and applications. Each module in the frameworks was discussed to ascertain its relevance based on the context of AI-SON and SDN integration. After examining each framework, the identified gaps are summarised as open issues for future works.
基金granted by the National Science&Technology Major Projects of China(Grant No.2016ZX05033).
文摘1 Introduction Information technology has been playing an ever-increasing role in geoscience.Sphisicated database platforms are essential for geological data storage,analysis and exchange of Big Data(Feblowitz,2013;Zhang et al.,2016;Teng et al.,2016;Tian and Li,2018).The United States has built an information-sharing platform for state-owned scientific data as a national strategy.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work under Grant Number(RGP 1/147/42),www.kku.edu.sa.This research was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-Track Path of Research Funding Program.
文摘In present digital era,data science techniques exploit artificial intelligence(AI)techniques who start and run small and medium-sized enterprises(SMEs)to have an impact and develop their businesses.Data science integrates the conventions of econometrics with the technological elements of data science.It make use of machine learning(ML),predictive and prescriptive analytics to effectively understand financial data and solve related problems.Smart technologies for SMEs enable allows the firm to get smarter with their processes and offers efficient operations.At the same time,it is needed to develop an effective tool which can assist small to medium sized enterprises to forecast business failure as well as financial crisis.AI becomes a familiar tool for several businesses due to the fact that it concentrates on the design of intelligent decision making tools to solve particular real time problems.With this motivation,this paper presents a new AI based optimal functional link neural network(FLNN)based financial crisis prediction(FCP)model forSMEs.The proposed model involves preprocessing,feature selection,classification,and parameter tuning.At the initial stage,the financial data of the enterprises are collected and are preprocessed to enhance the quality of the data.Besides,a novel chaotic grasshopper optimization algorithm(CGOA)based feature selection technique is applied for the optimal selection of features.Moreover,functional link neural network(FLNN)model is employed for the classification of the feature reduced data.Finally,the efficiency of theFLNNmodel can be improvised by the use of cat swarm optimizer(CSO)algorithm.A detailed experimental validation process takes place on Polish dataset to ensure the performance of the presented model.The experimental studies demonstrated that the CGOA-FLNN-CSO model has accomplished maximum prediction accuracy of 98.830%,92.100%,and 95.220%on the applied Polish dataset Year I-III respectively.
基金This work was supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2021R1F1A1063319).
文摘In recent times,sixth generation(6G)communication technologies have become a hot research topic because of maximum throughput and low delay services for mobile users.It encompasses several heterogeneous resource and communication standard in ensuring incessant availability of service.At the same time,the development of 6G enables the Unmanned Aerial Vehicles(UAVs)in offering cost and time-efficient solution to several applications like healthcare,surveillance,disaster management,etc.In UAV networks,energy efficiency and data collection are considered the major process for high quality network communication.But these procedures are found to be challenging because of maximum mobility,unstable links,dynamic topology,and energy restricted UAVs.These issues are solved by the use of artificial intelligence(AI)and energy efficient clustering techniques for UAVs in the 6G environment.With this inspiration,this work designs an artificial intelligence enabled cooperative cluster-based data collection technique for unmanned aerial vehicles(AECCDC-UAV)in 6G environment.The proposed AECCDC-UAV technique purposes for dividing the UAV network as to different clusters and allocate a cluster head(CH)to each cluster in such a way that the energy consumption(ECM)gets minimized.The presented AECCDC-UAV technique involves a quasi-oppositional shuffled shepherd optimization(QOSSO)algorithm for selecting the CHs and construct clusters.The QOSSO algorithm derives a fitness function involving three input parameters residual energy of UAVs,distance to neighboring UAVs,and degree of UAVs.The performance of the AECCDC-UAV technique is validated in many aspects and the obtained experimental values demonstration promising results over the recent state of art methods.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work under Grant Number(RGP 2/209/42)Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2022R77),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Mobile edge computing(MEC)provides effective cloud services and functionality at the edge device,to improve the quality of service(QoS)of end users by offloading the high computation tasks.Currently,the introduction of deep learning(DL)and hardware technologies paves amethod in detecting the current traffic status,data offloading,and cyberattacks in MEC.This study introduces an artificial intelligence with metaheuristic based data offloading technique for Secure MEC(AIMDO-SMEC)systems.The proposed AIMDO-SMEC technique incorporates an effective traffic prediction module using Siamese Neural Networks(SNN)to determine the traffic status in the MEC system.Also,an adaptive sampling cross entropy(ASCE)technique is utilized for data offloading in MEC systems.Moreover,the modified salp swarm algorithm(MSSA)with extreme gradient boosting(XGBoost)technique was implemented to identification and classification of cyberattack that exist in the MEC systems.For examining the enhanced outcomes of the AIMDO-SMEC technique,a comprehensive experimental analysis is carried out and the results demonstrated the enhanced outcomes of the AIMDOSMEC technique with the minimal completion time of tasks(CTT)of 0.680.
文摘The implementation of artificial intelligence(AI)in a smart society,in which the analysis of human habits is mandatory,requires automated data scheduling and analysis using smart applications,a smart infrastructure,smart systems,and a smart network.In this context,which is characterized by a large gap between training and operative processes,a dedicated method is required to manage and extract the massive amount of data and the related information mining.The method presented in this work aims to reduce this gap with near-zero-failure advanced diagnostics(AD)for smart management,which is exploitable in any context of Society 5.0,thus reducing the risk factors at all management levels and ensuring quality and sustainability.We have also developed innovative applications for a humancentered management system to support scheduling in the maintenance of operative processes,for reducing training costs,for improving production yield,and for creating a human–machine cyberspace for smart infrastructure design.The results obtained in 12 international companies demonstrate a possible global standardization of operative processes,leading to the design of a near-zero-failure intelligent system that is able to learn and upgrade itself.Our new method provides guidance for selecting the new generation of intelligent manufacturing and smart systems in order to optimize human–machine interactions,with the related smart maintenance and education.