期刊文献+
共找到797篇文章
< 1 2 40 >
每页显示 20 50 100
A data-driven model of drop size prediction based on artificial neural networks using small-scale data sets
1
作者 Bo Wang Han Zhou +3 位作者 Shan Jing Qiang Zheng Wenjie Lan Shaowei Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期71-83,共13页
An artificial neural network(ANN)method is introduced to predict drop size in two kinds of pulsed columns with small-scale data sets.After training,the deviation between calculate and experimental results are 3.8%and ... An artificial neural network(ANN)method is introduced to predict drop size in two kinds of pulsed columns with small-scale data sets.After training,the deviation between calculate and experimental results are 3.8%and 9.3%,respectively.Through ANN model,the influence of interfacial tension and pulsation intensity on the droplet diameter has been developed.Droplet size gradually increases with the increase of interfacial tension,and decreases with the increase of pulse intensity.It can be seen that the accuracy of ANN model in predicting droplet size outside the training set range is reach the same level as the accuracy of correlation obtained based on experiments within this range.For two kinds of columns,the drop size prediction deviations of ANN model are 9.6%and 18.5%and the deviations in correlations are 11%and 15%. 展开更多
关键词 artificial neural network Drop size Solvent extraction Pulsed column Two-phase flow HYDRODYNAMICS
下载PDF
Backflow Transformation for A=3 Nuclei with Artificial Neural Networks
2
作者 YANG Yilong ZHAO Pengwei 《原子能科学技术》 EI CAS CSCD 北大核心 2023年第4期673-678,共6页
A novel variational wave function defined as a Jastrow factor multiplying a backflow transformed Slater determinant was developed for A=3 nuclei.The Jastrow factor and backflow transformation were represented by artif... A novel variational wave function defined as a Jastrow factor multiplying a backflow transformed Slater determinant was developed for A=3 nuclei.The Jastrow factor and backflow transformation were represented by artificial neural networks.With this newly developed wave function,variational Monte Carlo calculations were carried out for3H and3He nuclei starting from a nuclear Hamiltonian based on the leadingorder pionless effective field theory.The obtained ground-state energy and charge radii were successfully benchmarked against the results of the highly-accurate hypersphericalharmonics method.The backflow transformation plays a crucial role in improving the nodal surface of the Slater determinant and,thus,providing accurate ground-state energy. 展开更多
关键词 nuclear many-body problem quantum Monte Carlo artificial neural network backflow transformation
下载PDF
Improvement of atmospheric jet-array plasma uniformity assisted by artificial neural networks
3
作者 郑树磊 聂秋月 +2 位作者 黄韬 侯春风 王晓钢 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第2期105-118,共14页
Atmospheric pressure plasma jet(APPJ)arrays have shown a potential in a wide range of applications ranging from material processing to biomedicine.In these applications,targets with complex three-dimensional structure... Atmospheric pressure plasma jet(APPJ)arrays have shown a potential in a wide range of applications ranging from material processing to biomedicine.In these applications,targets with complex three-dimensional structures often easily affect plasma uniformity.However,the uniformity is usually crucially important in application areas such as biomedicine,etc.In this work,the flow and electric field collaborative modulations are used to improve the uniformity of the plasma downstream.Taking a two-dimensional sloped metallic substrate with a 10°inclined angle as an example,the influences of both flow and electric field on the electron and typical active species distributions downstream are studied based on a multi-field coupling model.The electric and flow fields modulations are first separately applied to test the influence.Results show that the electric field modulation has an obvious improvement on the uniformity of plasma while the flow field modulation effect is limited.Based on such outputs,a collaborative modulation of both fields is then applied,and shows a much better effect on the uniformity.To make further advances,a basic strategy of uniformity improvement is thus acquired.To achieve the goal,an artificial neural network method with reasonable accuracy is then used to predict the correlation between plasma processing parameters and downstream uniformity properties for further improvement of the plasma uniformity.An optional scheme taking advantage of the flexibility of APPJ arrays is then developed for practical demands. 展开更多
关键词 atmospheric pressure plasma jet-array multi-field coupling and modulation artificial neural network(ANN)
下载PDF
Inventory Management and Demand Forecasting Improvement of a Forecasting Model Based on Artificial Neural Networks
4
作者 Cisse Sory Ibrahima Jianwu Xue Thierno Gueye 《Journal of Management Science & Engineering Research》 2021年第2期33-39,共7页
Forecasting is predicting or estimating a future event or trend.Supply chains have been constantly growing in most countries ever since the industrial revolution of the 18th century.As the competitiveness between supp... Forecasting is predicting or estimating a future event or trend.Supply chains have been constantly growing in most countries ever since the industrial revolution of the 18th century.As the competitiveness between supply chains intensifies day by day,companies are shifting their focus to predictive analytics techniques to minimize costs and boost productivity and profits.Excessive inventory(overstock)and stock outs are very significant issues for suppliers.Excessive inventory levels can lead to loss of revenue because the company's capital is tied up in excess inventory.Excess inventory can also lead to increased storage,insurance costs and labor as well as lower and degraded quality based on the nature of the product.Shortages or out of stock can lead to lost sales and a decline in customer contentment and loyalty to the store.If clients are unable to find the right products on the shelves,they may switch to another vendor or purchase alternative items.Demand forecasting is valuable for planning,scheduling and improving the coordination of all supply chain activities.This paper discusses the use of neural networks for seasonal time series forecasting.Our objective is to evaluate the contribution of the correct choice of the transfer function by proposing a new form of the transfer function to improve the quality of the forecast. 展开更多
关键词 Inventory management Demand forecasting Seasonal time series artificial neural networks Transfer function Inventory management Demand forecasting Seasonal time series artificial neural networks Transfer function
下载PDF
Design of artificial neural networks using a genetic algorithm to predict saturates of vacuum gas oil 被引量:15
5
作者 Dong Xiucheng Wang Shouchun +1 位作者 Sun Renjin Zhao Suoqi 《Petroleum Science》 SCIE CAS CSCD 2010年第1期118-122,共5页
Accurate prediction of chemical composition of vacuum gas oil (VGO) is essential for the routine operation of refineries. In this work, a new approach for auto-design of artificial neural networks (ANN) based on a... Accurate prediction of chemical composition of vacuum gas oil (VGO) is essential for the routine operation of refineries. In this work, a new approach for auto-design of artificial neural networks (ANN) based on a genetic algorithm (GA) is developed for predicting VGO saturates. The number of neurons in the hidden layer, the momentum and the learning rates are determined by using the genetic algorithm. The inputs for the artificial neural networks model are five physical properties, namely, average boiling point, density, molecular weight, viscosity and refractive index. It is verified that the genetic algorithm could find the optimal structural parameters and training parameters of ANN. In addition, an artificial neural networks model based on a genetic algorithm was tested and the results indicated that the VGO saturates can be efficiently predicted. Compared with conventional artificial neural networks models, this approach can improve the prediction accuracy. 展开更多
关键词 Saturates vacuum gas oil PREDICTION artificial neural networks genetic algorithm
下载PDF
A robust behavior of Feed Forward Back propagation algorithm of Artificial Neural Networks in the application of vertical electrical sounding data inversion 被引量:9
6
作者 Y.Srinivas A.Stanley Raj +2 位作者 D.Hudson Oliver D.Muthuraj N.Chandrasekar 《Geoscience Frontiers》 SCIE CAS 2012年第5期729-736,共8页
The applications of intelligent techniques have increased exponentially in recent days to study most of the non-linear parameters. In particular, the behavior of earth resembles the non- linearity applications. An eff... The applications of intelligent techniques have increased exponentially in recent days to study most of the non-linear parameters. In particular, the behavior of earth resembles the non- linearity applications. An efficient tool is needed for the interpretation of geophysical parameters to study the subsurface of the earth. Artificial Neural Networks (ANN) perform certain tasks if the structure of the network is modified accordingly for the purpose it has been used. The three most robust networks were taken and comparatively analyzed for their performance to choose the appropriate network. The single- layer feed-forward neural network with the back propagation algorithm is chosen as one of the well- suited networks after comparing the results. Initially, certain synthetic data sets of all three-layer curves have been taken tk^r training the network, and the network is validated by the field datasets collected from Tuticorin Coastal Region (78°7'30"E and 8°48'45"N), Tamil Nadu, India. The interpretation has been done successfully using the corresponding learning algorithm in the present study. With proper training of back propagation networks, it tends to give the resistivity and thickness of the subsurface layer model of the field resistivity data concerning the synthetic data trained earlier in the appropriate network. The network is trained with more Vertical Electrical Sounding (VES) data, and this trained network is demon- strated by the field data. Groundwater table depth also has been modeled. 展开更多
关键词 artificial neural networks(ANN) Resistivity inversion coastal aquifer parameters Layer model
下载PDF
Application of artificial neural networks in optimal tuning of tuned mass dampers implemented in high-rise buildings subjected to wind load 被引量:8
7
作者 Meysam Ramezani Akbar Bathaei Amir K.Ghorbani-Tanha 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2018年第4期903-915,共13页
High-rise buildings are usually considered as flexible structures with low inherent damping. Therefore, these kinds of buildings are susceptible to wind-induced vibration. Tuned Mass Damper(TMD) can be used as an ef... High-rise buildings are usually considered as flexible structures with low inherent damping. Therefore, these kinds of buildings are susceptible to wind-induced vibration. Tuned Mass Damper(TMD) can be used as an effective device to mitigate excessive vibrations. In this study, Artificial Neural Networks is used to find optimal mechanical properties of TMD for high-rise buildings subjected to wind load. The patterns obtained from structural analysis of different multi degree of freedom(MDF) systems are used for training neural networks. In order to obtain these patterns, structural models of some systems with 10 to 80 degrees-of-freedoms are built in MATLAB/SIMULINK program. Finally, the optimal properties of TMD are determined based on the objective of maximum displacement response reduction. The Auto-Regressive model is used to simulate the wind load. In this way, the uncertainties related to wind loading can be taken into account in neural network’s outputs. After training the neural network, it becomes possible to set the frequency and TMD mass ratio as inputs and get the optimal TMD frequency and damping ratio as outputs. As a case study, a benchmark 76-story office building is considered and the presented procedure is used to obtain optimal characteristics of the TMD for the building. 展开更多
关键词 artificial neural networks tuned mass damper wind load auto-regressive model optimal frequency anddamping
下载PDF
Application of Artificial Neural Networks to Rainfall Forecasting in Queensland,Australia 被引量:4
8
作者 John ABBOT Jennifer MAROHASY 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2012年第4期717-730,共14页
In this study, the application of artificial intelligence to monthly and seasonal rainfall forecasting in Queensland, Australia, was assessed by inputting recognized climate indices, monthly historical rainfall data, ... In this study, the application of artificial intelligence to monthly and seasonal rainfall forecasting in Queensland, Australia, was assessed by inputting recognized climate indices, monthly historical rainfall data, and atmospheric temperatures into a prototype stand-alone, dynamic, recurrent, time-delay, artificial neural network. Outputs, as monthly rainfall forecasts 3 months in advance for the period 1993 to 2009, were compared with observed rainfall data using time-series plots, root mean squared error (RMSE), and Pearson correlation coefficients. A comparison of RMSE values with forecasts generated by the Australian Bureau of Meteorology's Predictive Ocean Atmosphere Model for Australia (POAMA)-I.5 general circulation model (GCM) indicated that the prototype achieved a lower RMSE for 16 of the 17 sites compared. The application of artificial neural networks to rainfall forecasting was reviewed. The prototype design is considered preliminary, with potential for significant improvement such as inclusion of output from GCMs and experimentation with other input attributes. 展开更多
关键词 general circulation models artificial neural networks RAINFALL FORECAST
下载PDF
Application of artificial neural networks for operating speed prediction at horizontal curves: a case study in Egypt 被引量:5
9
作者 Ahmed Mohamed Semeida 《Journal of Modern Transportation》 2014年第1期20-29,共10页
Horizontal alignment greatly affects the speedof vehicles at rural roads. Therefore, it is necessary toanalyze and predict vehicles speed on curve sections.Numerous studies took rural two-lane as research subjectsand ... Horizontal alignment greatly affects the speedof vehicles at rural roads. Therefore, it is necessary toanalyze and predict vehicles speed on curve sections.Numerous studies took rural two-lane as research subjectsand provided models for predicting operating speeds.However, less attention has been paid to multi-lane highwaysespecially in Egypt. In this research, field operatingspeed data of both cars and trucks on 78 curve sections offour multi-lane highways is collected. With the data, correlationbetween operating speed (V85) and alignment isanalyzed. The paper includes two separate relevant analyses.The first analysis uses the regression models toinvestigate the relationships between V85 as dependentvariable, and horizontal alignment and roadway factors asindependent variables. This analysis proposes two predictingmodels for cars and trucks. The second analysisuses the artificial neural networks (ANNs) to explore theprevious relationships. It is found that the ANN modelinggives the best prediction model. The most influential variableon V85 for cars is the radius of curve. Also, for V85 fortrucks, the most influential variable is the median width.Finally, the derived models have statistics within theacceptable regions and they are conceptually reasonable. 展开更多
关键词 artificial neural networks Horizontal curve Multi-lane highways Operating speed Prediction models Regression models Roadway factors
下载PDF
Proton exchange membrane fuel cells modeling based on artificial neural networks 被引量:4
10
作者 YudongTian XinjianZhu GuangyiCao 《Journal of University of Science and Technology Beijing》 CSCD 2005年第1期72-77,共6页
关键词 fuel cells proton exchange membrane artificial neural networks improved BP algorithm MODELING
下载PDF
Compressive Strength Estimation for the Fiber-Reinforced Polymer (FRP)-Confined Concrete Columns with Different Shapes Using Artificial Neural Networks 被引量:3
11
作者 曹玉贵 李小青 胡隽 《Journal of Donghua University(English Edition)》 EI CAS 2015年第3期395-400,共6页
An evaluation of existing strength of concrete columns confined with fiber-reinforced polymer( FRP) was presented with extensive collection of experimental data. According to the evaluation results, artificial neural ... An evaluation of existing strength of concrete columns confined with fiber-reinforced polymer( FRP) was presented with extensive collection of experimental data. According to the evaluation results, artificial neural networks( ANNs) model to predict the ultimate strength of FRP confined column with different shapes was proposed. The models had seven inputs including the column length,the tensile strength of the FRP in the hoop direction,the total thickness of FRP,the diameter of the concrete specimen,the elastic modulus of FRP,the corner radius and the concrete compressive strength. The compressive strength of the confined concrete was the output data. The results reveal that the proposed models have good prediction and generalization capacity with acceptable errors. 展开更多
关键词 compressive strength concrete column artificial neural networks(ANN) fiber-reinforced polymer(FRP)
下载PDF
Prediction of Anoxic Sulfide Biooxidation Under Various HRTs Using Artificial Neural Networks 被引量:1
12
作者 QAISAR MAHMOOD PING ZHENG +6 位作者 DONG-LEI WU XU-SHENG WANG HAYAT YOUSAF EJAZ UL-ISLAM MUHAMMAD JAFFAR HASSAN GHULAM JILANI MUHAMMAD RASHID AZIM 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2007年第5期398-403,共6页
Objective During present investigation the data of a laboratory-scale anoxic sulfide oxidizing (ASO) reactor were used in a neural network system to predict its performance. Methods Five uncorrelated components of t... Objective During present investigation the data of a laboratory-scale anoxic sulfide oxidizing (ASO) reactor were used in a neural network system to predict its performance. Methods Five uncorrelated components of the influent wastewater were used as the artificial neural network model input to predict the output of the effluent using back-propagation and general regression algorithms. The best prediction performance is achieved when the data are preprocessed using principal components analysis (PCA) before they are fed to a back propagated neural network. Results Within the range of experimental conditions tested, it was concluded that the ANN model gave predictable results for nitrite removal from wastewater through ASO process. The model did not predict the formation of sulfate to an acceptable manner. Conclusion Apart from experimentation, ANN model can help to simulate the results of such experiments in finding the best optimal choice for ASO based denitrification. Together with wastewater collection and the use of improved treatment systems and new technologies, better control of wastewater treatment plant (WTP) can lead to more effective maneuvers by its operators and, as a consequence, better effluent quality. 展开更多
关键词 artificial neural networks Effluent sulfide prediction Effluent nitrite prediction Principal components analysis Wastewater treatment ASO reactor
下载PDF
Simultaneous spectrophotometric determination of four preservatives in foodstuffs by multivariate calibration and artificial neural networks 被引量:1
13
作者 Yan Qing Chen 《Chinese Chemical Letters》 SCIE CAS CSCD 2009年第5期615-619,共5页
Benzoic acid (BA), methylparaben (MP), propylparaben (PP) and sorbic acid (SA) are food preservatives, and they have well defined UV spectra. However, their spectra overlap seriously, and it is difficult to de... Benzoic acid (BA), methylparaben (MP), propylparaben (PP) and sorbic acid (SA) are food preservatives, and they have well defined UV spectra. However, their spectra overlap seriously, and it is difficult to determine them individually from their mixtures without preseparation. In this paper, seven different chemometric approaches were applied to resolve the overlapping spectra and to determine these compounds simultaneously. With respect to the criteria of % relative prediction error (RPE) and % recovery, principal component regression (PCR) and radial basis function-artificial neural network (RBF-ANN) were the preferred methods. These two methods were successfully applied to the analysis of some commercial samples. 展开更多
关键词 SPECTROPHOTOMETRY PRESERVATIVES Multivariate calibration artificial neural networks
下载PDF
Parameter selecting and quality predicting of spot welding based on artificial neural networks 被引量:1
14
作者 赵熹华 王宸煜 张若冰 《China Welding》 EI CAS 1998年第2期4-8,共5页
This paper proposes a procedure for using artificial neural networks (ANN) in spot welding , and establishes spot welding parameter selecting ANN systems and spot welding joint quality predicting ANN systems . It has ... This paper proposes a procedure for using artificial neural networks (ANN) in spot welding , and establishes spot welding parameter selecting ANN systems and spot welding joint quality predicting ANN systems . It has been proved that the ANN systems have high prediction precision , providing a new way of parameter selecting and quality predicting in spot welding . 展开更多
关键词 artificial neural networks resistance spot welding parameter selecting quality predicting
下载PDF
Comparing the efficiency of artificial neural networks in sEMG-based simultaneous and continuous estimation of hand kinematics 被引量:1
15
作者 Wafa Batayneh Enas Abdulhay Mohammad Alothman 《Digital Communications and Networks》 SCIE CSCD 2022年第2期162-173,共12页
Surface Electromyography(sEMG)plays a key role in many applications such as control of Human-Machine Interfaces(HMI)and neuromusculoskeletal modeling.It has strongly nonlinear relations to joint kinematics and reflect... Surface Electromyography(sEMG)plays a key role in many applications such as control of Human-Machine Interfaces(HMI)and neuromusculoskeletal modeling.It has strongly nonlinear relations to joint kinematics and reflects the subjects’intention in moving their limbs.Such relations have been traditionally examined by either integrated biomechanics and multi-body dynamics or gesture-based classification approaches.However,these methods have drawbacks that limit their usability.Different from them,joint kinematics can be continuously reconstructed from sEMG via estimation approaches,for instance,the Artificial Neural Networks(ANNs).The Comparison of different ANNs used in different studies is difficult,and in many cases,impossible.The current study focuses on fairly evaluating four types of ANN over the same dataset and conditions in proportional and simultaneous estimation of 15 hand joint angles from 10 sEMG signals.The presented ANNs are Feedforward,Cascade-Forward,Radial Basis Function(RBFNN),and Generalized Regression(GRNN).Each ANN is applied to its special parametric study.All the methods efficiently solved the regression problem of the complex multi-input multi-output bio-system.The RBFNN has the best performance over the others with a 79.80%mean correlation coefficient over all joints,and its accuracy reaches as high as 92.67%in some joints.Interestingly,the highest accuracy over individual joints is 93.46%,which is achieved via the GRNN.The good accuracy suggests that the proposed approaches can be used as alternatives to the previously adopted ones and can be employed effectively to synchronously control multi-degrees of freedom HMI and for general multi-joint kinematics estimation purposes. 展开更多
关键词 Surface electromyography Kinematics estimation artificial neural networks
下载PDF
New artificial neural networks for true triaxial stress state analysis and demonstration of intermediate principal stress effects on intact rock strength 被引量:2
16
作者 Rennie Kaunda 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2014年第4期338-347,共10页
Simulations are conducted using five new artificial neural networks developed herein to demonstrate and investigate the behavior of rock material under polyaxial loading. The effects of the intermediate principal stre... Simulations are conducted using five new artificial neural networks developed herein to demonstrate and investigate the behavior of rock material under polyaxial loading. The effects of the intermediate principal stress on the intact rock strength are investigated and compared with laboratory results from the literature. To normalize differences in laboratory testing conditions, the stress state is used as the objective parameter in the artificial neural network model predictions. The variations of major principal stress of rock material with intermediate principal stress, minor principal stress and stress state are investigated. The artificial neural network simulations show that for the rock types examined, none were independent of intermediate principal stress effects. In addition, the results of the artificial neural network models, in general agreement with observations made by others, show (a) a general trend of strength increasing and reaching a peak at some intermediate stress state factor, followed by a decline in strength for most rock types; (b) a post-peak strength behavior dependent on the minor principal stress, with respect to rock type; (c) sensitivity to the stress state, and to the interaction between the stress state and uniaxial compressive strength of the test data by the artificial neural networks models (two-way analysis of variance; 95% confidence interval). Artificial neural network modeling, a self-learning approach to polyaxial stress simulation, can thus complement the commonly observed difficult task of conducting true triaxial laboratory tests, and/or other methods that attempt to improve two-dimensional (2D) failure criteria by incorporating intermediate principal stress effects. 展开更多
关键词 artificial neural networks Polyaxial loading Intermediate principal stress Rock failure criteria True triaxial test
下载PDF
Gap Filling of Net Ecosystem CO<sub>2</sub>Exchange (NEE) above Rain-Fed Maize Using Artificial Neural Networks (ANNs) 被引量:1
17
作者 Babak Safa Timothy J. Arkebauer +2 位作者 Qiuming Zhu Andy Suyker Suat Irmak 《Journal of Software Engineering and Applications》 2021年第5期150-171,共22页
<span style="font-family:Verdana;">The eddy covariance technique is an accurate and direct tool to measure the Net Ecosystem Exchange (NEE) of carbon dioxide. However, sometimes conditions are not amen... <span style="font-family:Verdana;">The eddy covariance technique is an accurate and direct tool to measure the Net Ecosystem Exchange (NEE) of carbon dioxide. However, sometimes conditions are not amenable to measurements using this technique. Thus, different methods have been developed to allow gap-filling and quality assessment of eddy covariance data sets. In this study first, two different Artificial Neural Networks (ANNs) approaches, the Multi-layer Perceptron (MLP) trained by the Back-Propagation (BP) algorithm, and the Radial Basis Function (RBF), were used to fill missing NEE data measured above rain-fed maize at the University of Nebraska-Lincoln Agricultural Research and Development Center near Mead, Nebraska. The gap-filled data were then compared by different statistical indices to gap-filled data obtained with the technique suggested by Suyker and Verma in 2005 [S&V method], and the ANN approach presented by Papale in 2003. The results showed that the RBF network was able to find better fits for missing values compared to the MLP (BP) network and S&V method. In addition, unlike the S&V method, which depends on different gap-filling procedures over the year;the structure of RBF and MLP (BP) networks was constant. However, data analysis indicated Papale’s approach gave better fits than the RBF and MLP (BP) methods. Thus, based on this work, Papale’s approach is the best method to estimate the missing data;though the applied statistical indices, which were used for model evaluation, show little difference between Papale’s approach and the RBF and MLP (BP).</span> 展开更多
关键词 Gap Filling Net Ecosystem Exchange of Carbon Dioxide artificial neural networks Eddy Covariance System
下载PDF
Fault Diagnostics on Steam Boilers and Forecasting System Based on Hybrid Fuzzy Clustering and Artificial Neural Networks in Early Detection of Chamber Slagging/Fouling 被引量:1
18
作者 Mohan Sathya Priya Radhakrishnan Kanthavel Muthusamy Saravanan 《Circuits and Systems》 2016年第12期4046-4070,共25页
The slagging/fouling due to the accession of fireside deposits on the steam boilers decreases boiler efficiency and availability which leads to unexpected shut-downs. Since it is inevitably associated with the three m... The slagging/fouling due to the accession of fireside deposits on the steam boilers decreases boiler efficiency and availability which leads to unexpected shut-downs. Since it is inevitably associated with the three major factors namely the fuel characteristics, boiler operating conditions and ash behavior, this serious slagging/fouling may be reduced by varying the above three factors. The research develops a generic slagging/fouling prediction tool based on hybrid fuzzy clustering and Artificial Neural Networks (FCANN). The FCANN model presents a good accuracy of 99.85% which makes this model fast in response and easy to be updated with lesser time when compared to single ANN. The comparison between predictions and observations is found to be satisfactory with less input parameters. This should be capable of giving relatively quick responses while being easily implemented for various furnace types. 展开更多
关键词 Steam Boiler Fouling and Slagging Fuzzy Clustering artificial neural networks
下载PDF
Forecasting Monsoon Precipitation Using Artificial Neural Networks
19
作者 曹鸿兴 魏凤英 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2001年第5期950-958,共9页
This paper explores the application of Artificial Intelligent (AI) techniques for climate forecast. It presents a study on modelling the monsoon precipitation forecast by means of Artificial Neural Networks (ANNs). Us... This paper explores the application of Artificial Intelligent (AI) techniques for climate forecast. It presents a study on modelling the monsoon precipitation forecast by means of Artificial Neural Networks (ANNs). Using the historical data of the total amount of summer rainfall over the Delta Area of Yangtze River in China, three ANNs models have been developed to forecast the monsoon precipitation in the corresponding area one year, five-year, and ten-year forward respectively. Performances of the models have been validated using a 'new' data set that has not been exposed to the models during the processes of model development and test. The experiment results are promising, indicating that the proposed ANNs models have good quality in terms of the accuracy, stability and generalisation ability. 展开更多
关键词 forecasting monsoon precipitation artificial intelligent technique artificial neural networks
下载PDF
Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
20
作者 罗浩 王一军 +3 位作者 叶炜 钟海 毛宜钰 郭迎 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第2期233-241,共9页
Continuous-variable quantum key distribution(CVQKD)allows legitimate parties to extract and exchange secret keys.However,the tradeoff between the secret key rate and the accuracy of parameter estimation still around t... Continuous-variable quantum key distribution(CVQKD)allows legitimate parties to extract and exchange secret keys.However,the tradeoff between the secret key rate and the accuracy of parameter estimation still around the present CVQKD system.In this paper,we suggest an approach for parameter estimation of the CVQKD system via artificial neural networks(ANN),which can be merged in post-processing with less additional devices.The ANN-based training scheme,enables key prediction without exposing any raw key.Experimental results show that the error between the predicted values and the true ones is in a reasonable range.The CVQKD system can be improved in terms of the secret key rate and the parameter estimation,which involves less additional devices than the traditional CVQKD system. 展开更多
关键词 quantum key distribution artificial neural networks secret key rate parameter estimation
下载PDF
上一页 1 2 40 下一页 到第
使用帮助 返回顶部