Previous studies have shown that mitogen-activated protein kinase (MAPK) signaling pathways are involved in N-methyI-D-aspartate (NMDA)-mediated excitotoxicity. However, a systematic observation or analysis of the...Previous studies have shown that mitogen-activated protein kinase (MAPK) signaling pathways are involved in N-methyI-D-aspartate (NMDA)-mediated excitotoxicity. However, a systematic observation or analysis of the role of these various MAPK pathways in excitotoxicity processes does not exist. The present study further evaluated the role and contribution of three MAPK pathways extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 MAPK in an NMDA-mediated excitotoxicity model using MAPK^specific inhibitor. Results demonstrated that c-Jun N-terminal kinase inhibitor SP600125 and/or p38 MAPK inhibitor SB203580 inhibited NMDA-induced reduction in cell viability, as well as reduced NMDA-induced lactate dehydrogenase leakage and reactive oxygen species production. However, PD98059, an inhibitor of extracellular signal-regulated kinase, did not influence this model. Results demonstrated an involvement of c-Jun N-terminal kinase and p38 MAPK, but not extracellular signal-regulated kinase, in NMDA-mediated excitotoxicity in cortical neurons.展开更多
BACKGROUND: Activated N-methyl-D-aspartate (NMDA) receptor is involved in the formation of chronic neuropathic pain, and its antagonist, ketamine, exhibits effective amelioration of diabetic neuropathic pain (DNP...BACKGROUND: Activated N-methyl-D-aspartate (NMDA) receptor is involved in the formation of chronic neuropathic pain, and its antagonist, ketamine, exhibits effective amelioration of diabetic neuropathic pain (DNP). However, the mechanisms of NMDA receptor participation in the formation and maintenance of DNP remain poorly understood. OBJECTIVE: To evaluate the role NMDA receptor plays in DNP and effects on p38 mitogen activated protein kinase (p38 MAPK) in a rat model of DNP. DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment was performed at the Human Embryonic Stem Cell Research Institute of Yunyang Medical College Affiliated Taihe Hospital between July 2005 and September 2007. MATERIALS: Streptozotocin was provided by Sigma, USA; p38 MAPK inhibitor (SB203580) was provided by Shanghai KangChen Biotech, China; NMDA receptor antagonist (MK-801) was purchased from Shanghai Yope Biotech, China. METHODS: A total of 128 healthy, Wistar rats of clean grade, aged 3 months and weighing 180- 220 g, were randomly assigned to 4 groups: control, DNP model, p38 MAPK, and NMDA receptor. Each group contained 32 rats. DNP was established in all groups except for the control group by intraperitoneal injection of streptozocin (65 mg/kg). Subsequently, 1 mg/kg SB203580 and 1 mg/kg MK-801 were injected once each week via intraperitoneal injection in the p38 MAPK and NMDA receptor groups, respectively. MAIN OUTCOME MEASURES: At the end of 2, 4, 6, and 8 weeks following streptozotocin injection, mechanical withdrawal threshold was measured in 8 animals from each group following von Frey filament stimulation. The rats were anesthetized and nerve conduction velocity of the left sciatic nerve was measured. Subsequently, the right sciatic nerve, the lumbar segment of the spinal cord, and dorsal root ganglia were removed from the L3-6 segment for microscopic examination, p38 MAPK expression was determined using immunohistochemistry and Western blot analysis. Expression of NMDA receptor 1 mRNA in dorsal root ganglion and spinal cord neurons was detected using RT-PCR. RESULTS: Mechanical withdrawal threshold and nerve conduction velocity were significantly reduced, and p38 MAPK and NMDA receptor 1 mRNA expression in the spinal cord and dorsal root ganglia were significantly increased, in the model, p38 MAPK, and NMDA receptor groups compared with the control group at all time points (P 〈 0.05). At 4-8 weeks following successful DNP model establishment, SB203580 and MK-801 increased mechanical withdrawal threshold, accelerated nerve conduction velocity, and attenuated p38 MAPK expression, compared with the model group. The NMDA receptor group exhibited downregulated mRNA expression of NMDA receptor 1 compared with the model and p38 MAPK groups (P 〈 0.05). CONCLUSION: NMDA receptor was highly expressed in the brains of DNP rats and was involved in DNP development via activation of the p38 MAPK signal pathway.展开更多
In this study, primary cultured cerebral cortical neurons of Sprague-Dawley neonatal rats were treated with 0.25, 0.5, and 1.0 μM calmodulin-dependent protein kinase II inhibitor KN-93 after 50 μM N-methyI-D-asparti...In this study, primary cultured cerebral cortical neurons of Sprague-Dawley neonatal rats were treated with 0.25, 0.5, and 1.0 μM calmodulin-dependent protein kinase II inhibitor KN-93 after 50 μM N-methyI-D-aspartic acid-induced injury. Results showed that, compared with N-methyi-D- aspartic acid-induced injury neurons, the activity of cells markedly increased, apoptosis was significantly reduced, leakage of lactate dehydrogenase decreased, and intracellular Ca2+ concentrations in neurons reduced after KN-93 treatment. The expression of caspase-3, phosphorylated calmodulin-dependent protein kinase II and total calmodulin-dependent protein kinase II protein decreased after KN-93 treatment. And the effect was apparent at a dose of 1.0 pM KN-93. Experimental findings suggest that KN-93 can induce a dose-dependent neuroprotective effect, and that the underlying mechanism may be related to the down-regulation of caspase-3 and calmodulin- dependent protein kinase II expression.展开更多
The complexities of energy transfer mechanisms in the flagella of mammalian sperm flagella have been intensively investigated and demonstrate significant diversity across species.Enzymatic shuttles,particularly adenyl...The complexities of energy transfer mechanisms in the flagella of mammalian sperm flagella have been intensively investigated and demonstrate significant diversity across species.Enzymatic shuttles,particularly adenylate kinase(AK)and creatine kinase(CK),are pivotal in the efficient transfer of intracellular ATP,showing distinct tissue-and species-specificity.Here,the expression profiles of AK and CK were investigated in mice and found to fall into four subgroups,of which Subgroup III AKs were observed to be unique to the male reproductive system and conserved across chordates.Both AK8 and AK9 were found to be indispensable to male reproduction after analysis of an infertile male cohort.Knockout mouse models showed that AK8 and AK9 were central to promoting sperm motility.Immunoprecipitation combined with mass spectrometry revealed that AK8 and AK9 interact with the radial spoke(RS)of the axoneme.Examination of various human and mouse sperm samples with substructural damage,including the presence of multiple RS subunits,showed that the head of radial spoke 3 acts as an adapter for AK9 in the flagellar axoneme.Using an ATP probe together with metabolomic analysis,it was found that AK8 and AK9 cooperatively regulated ATP transfer in the axoneme,and were concentrated at sites associated with energy consumption in the flagellum.These findings indicate a novel function for RS beyond its structural role,namely,the regulation of ATP transfer.In conclusion,the results expand the functional spectrum of AK proteins and suggest a fresh model regarding ATP transfer within mammalian flagella.展开更多
The aspartate kinase(AK)from Mycobacterium tuberculosis(Mtb)catalyzes the biosynthesis of aspartate family amino acids,including lysine,threonine,isoleucine and methionine.We determined the crystal structures of the r...The aspartate kinase(AK)from Mycobacterium tuberculosis(Mtb)catalyzes the biosynthesis of aspartate family amino acids,including lysine,threonine,isoleucine and methionine.We determined the crystal structures of the regulatory subunit of aspartate kinase from Mtb alone(referred to as MtbAKβ)and in complex with threonine(referred to as MtbAKβ-Thr)at resolutions of 2.6A and 2.0Å,respectively.MtbAKβ is composed of two perpendicular non-equivalent ACT domains[aspartate kinase,chorismate mutase,and TyrA(prephenate dehydrogenase)]per monomer.Each ACT domain contains two α helices and four antiparallel β strands.The structure of MtbAKβ shares high similarity with the regulatory subunit of the aspartate kinase from Corynebacterium glutamicum(referred to as CgAKβ),suggesting similar regulatory mechanisms.Biochemical assays in our study showed that MtbAK is inhibited by threonine.Based on crystal structure analysis,we discuss the regulatory mechanism of MtbAK.展开更多
基金supported by the Scientific and Technical Innovation Fund of Shanxi Medical University,No.01200802Shanxi Province Foundation for Returnees,No.2007-43
文摘Previous studies have shown that mitogen-activated protein kinase (MAPK) signaling pathways are involved in N-methyI-D-aspartate (NMDA)-mediated excitotoxicity. However, a systematic observation or analysis of the role of these various MAPK pathways in excitotoxicity processes does not exist. The present study further evaluated the role and contribution of three MAPK pathways extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 MAPK in an NMDA-mediated excitotoxicity model using MAPK^specific inhibitor. Results demonstrated that c-Jun N-terminal kinase inhibitor SP600125 and/or p38 MAPK inhibitor SB203580 inhibited NMDA-induced reduction in cell viability, as well as reduced NMDA-induced lactate dehydrogenase leakage and reactive oxygen species production. However, PD98059, an inhibitor of extracellular signal-regulated kinase, did not influence this model. Results demonstrated an involvement of c-Jun N-terminal kinase and p38 MAPK, but not extracellular signal-regulated kinase, in NMDA-mediated excitotoxicity in cortical neurons.
基金a Grant from Hubei Provincial Health Ministry,No.JX3C58
文摘BACKGROUND: Activated N-methyl-D-aspartate (NMDA) receptor is involved in the formation of chronic neuropathic pain, and its antagonist, ketamine, exhibits effective amelioration of diabetic neuropathic pain (DNP). However, the mechanisms of NMDA receptor participation in the formation and maintenance of DNP remain poorly understood. OBJECTIVE: To evaluate the role NMDA receptor plays in DNP and effects on p38 mitogen activated protein kinase (p38 MAPK) in a rat model of DNP. DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment was performed at the Human Embryonic Stem Cell Research Institute of Yunyang Medical College Affiliated Taihe Hospital between July 2005 and September 2007. MATERIALS: Streptozotocin was provided by Sigma, USA; p38 MAPK inhibitor (SB203580) was provided by Shanghai KangChen Biotech, China; NMDA receptor antagonist (MK-801) was purchased from Shanghai Yope Biotech, China. METHODS: A total of 128 healthy, Wistar rats of clean grade, aged 3 months and weighing 180- 220 g, were randomly assigned to 4 groups: control, DNP model, p38 MAPK, and NMDA receptor. Each group contained 32 rats. DNP was established in all groups except for the control group by intraperitoneal injection of streptozocin (65 mg/kg). Subsequently, 1 mg/kg SB203580 and 1 mg/kg MK-801 were injected once each week via intraperitoneal injection in the p38 MAPK and NMDA receptor groups, respectively. MAIN OUTCOME MEASURES: At the end of 2, 4, 6, and 8 weeks following streptozotocin injection, mechanical withdrawal threshold was measured in 8 animals from each group following von Frey filament stimulation. The rats were anesthetized and nerve conduction velocity of the left sciatic nerve was measured. Subsequently, the right sciatic nerve, the lumbar segment of the spinal cord, and dorsal root ganglia were removed from the L3-6 segment for microscopic examination, p38 MAPK expression was determined using immunohistochemistry and Western blot analysis. Expression of NMDA receptor 1 mRNA in dorsal root ganglion and spinal cord neurons was detected using RT-PCR. RESULTS: Mechanical withdrawal threshold and nerve conduction velocity were significantly reduced, and p38 MAPK and NMDA receptor 1 mRNA expression in the spinal cord and dorsal root ganglia were significantly increased, in the model, p38 MAPK, and NMDA receptor groups compared with the control group at all time points (P 〈 0.05). At 4-8 weeks following successful DNP model establishment, SB203580 and MK-801 increased mechanical withdrawal threshold, accelerated nerve conduction velocity, and attenuated p38 MAPK expression, compared with the model group. The NMDA receptor group exhibited downregulated mRNA expression of NMDA receptor 1 compared with the model and p38 MAPK groups (P 〈 0.05). CONCLUSION: NMDA receptor was highly expressed in the brains of DNP rats and was involved in DNP development via activation of the p38 MAPK signal pathway.
基金supported by Liaoning Social Development Key Projects of Scientific and Technological Department of Liaoning Province, No. 2012225019
文摘In this study, primary cultured cerebral cortical neurons of Sprague-Dawley neonatal rats were treated with 0.25, 0.5, and 1.0 μM calmodulin-dependent protein kinase II inhibitor KN-93 after 50 μM N-methyI-D-aspartic acid-induced injury. Results showed that, compared with N-methyi-D- aspartic acid-induced injury neurons, the activity of cells markedly increased, apoptosis was significantly reduced, leakage of lactate dehydrogenase decreased, and intracellular Ca2+ concentrations in neurons reduced after KN-93 treatment. The expression of caspase-3, phosphorylated calmodulin-dependent protein kinase II and total calmodulin-dependent protein kinase II protein decreased after KN-93 treatment. And the effect was apparent at a dose of 1.0 pM KN-93. Experimental findings suggest that KN-93 can induce a dose-dependent neuroprotective effect, and that the underlying mechanism may be related to the down-regulation of caspase-3 and calmodulin- dependent protein kinase II expression.
基金supported by National Key Research and Development Program of China(2022YFC2702702,2021YFC2700901)the National Natural Science Foundation of China(81971441,82171607,32000584)+3 种基金the University Outstanding Young Talents Support Program(gxyq2021174)Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences(2019PT310002)Anhui Provincial Natural Science Foundation(2208085Y31)the Natural Science Foundation of Jiangsu Province(BK20230004).
文摘The complexities of energy transfer mechanisms in the flagella of mammalian sperm flagella have been intensively investigated and demonstrate significant diversity across species.Enzymatic shuttles,particularly adenylate kinase(AK)and creatine kinase(CK),are pivotal in the efficient transfer of intracellular ATP,showing distinct tissue-and species-specificity.Here,the expression profiles of AK and CK were investigated in mice and found to fall into four subgroups,of which Subgroup III AKs were observed to be unique to the male reproductive system and conserved across chordates.Both AK8 and AK9 were found to be indispensable to male reproduction after analysis of an infertile male cohort.Knockout mouse models showed that AK8 and AK9 were central to promoting sperm motility.Immunoprecipitation combined with mass spectrometry revealed that AK8 and AK9 interact with the radial spoke(RS)of the axoneme.Examination of various human and mouse sperm samples with substructural damage,including the presence of multiple RS subunits,showed that the head of radial spoke 3 acts as an adapter for AK9 in the flagellar axoneme.Using an ATP probe together with metabolomic analysis,it was found that AK8 and AK9 cooperatively regulated ATP transfer in the axoneme,and were concentrated at sites associated with energy consumption in the flagellum.These findings indicate a novel function for RS beyond its structural role,namely,the regulation of ATP transfer.In conclusion,the results expand the functional spectrum of AK proteins and suggest a fresh model regarding ATP transfer within mammalian flagella.
基金supported by the National Basic Research Program(973 Program)(Grant Nos.2011CB915501 and 2011CB910304)National Major Project(Grant Nos.2009ZX10004-304 and 2009ZX10004-802).
文摘The aspartate kinase(AK)from Mycobacterium tuberculosis(Mtb)catalyzes the biosynthesis of aspartate family amino acids,including lysine,threonine,isoleucine and methionine.We determined the crystal structures of the regulatory subunit of aspartate kinase from Mtb alone(referred to as MtbAKβ)and in complex with threonine(referred to as MtbAKβ-Thr)at resolutions of 2.6A and 2.0Å,respectively.MtbAKβ is composed of two perpendicular non-equivalent ACT domains[aspartate kinase,chorismate mutase,and TyrA(prephenate dehydrogenase)]per monomer.Each ACT domain contains two α helices and four antiparallel β strands.The structure of MtbAKβ shares high similarity with the regulatory subunit of the aspartate kinase from Corynebacterium glutamicum(referred to as CgAKβ),suggesting similar regulatory mechanisms.Biochemical assays in our study showed that MtbAK is inhibited by threonine.Based on crystal structure analysis,we discuss the regulatory mechanism of MtbAK.