Background As demand for high quality animal feed continues to raise,it becomes increasingly important to mini-mize the environmental impact of feed production.An appealing sustainable approach to provide feed fractio...Background As demand for high quality animal feed continues to raise,it becomes increasingly important to mini-mize the environmental impact of feed production.An appealing sustainable approach to provide feed fractions is to use organic residues from agro-food industry.In this regard,volatile fatty acids(VFAs)such as acetic,propionic and butyric acids,derived from bioconversion of organic residues can be used as precursors for production of micro-bial protein with ruminant feed inclusion potential.This study aims to investigate the in vitro digestibility of the Asper-gillus oryzae edible fungal biomass cultivated on VFAs-derived from anaerobic digestion of residues.The produced fungal protein biomass,along with hay clover silage and rapeseed meal were subjected to various in vitro assays using two-stage Tilley and Terry(TT),gas,and bag methods to evaluate and compare its digestibility for application in ruminant feed.Results The produced fungal biomass contained a higher crude protein(CP)(41%–49%)and rather similar neutral detergent fiber(NDF)(41%–56%)compared to rapeseed meal.The rumen in vitro dry matter digestibility(IVDMD)of the fungal biomass in the TT method ranged from 82%to 88%(statistically similar to that of the gas method(72%to 85%)).The IVDMD of fungal biomass were up to 26%and 40%greater than that of hay clover silage and rapeseed meal,respectively.The type of substrate and bag method had pronounced effect on the fermentation products(ammonium-N(NH4+-N),total gas and VFAs).Fungal biomass digestion resulted in the highest release of NH4+-N(340–540 mg/L)and the ratio of acetate to propionate ratio(3.5)among subjected substrates.Conclusion The results indicate that gas method can be used as a reliable predictor for IVDMD as well as fermenta-tion products.Furthermore,the high IVDMD and fermentation product observed for Aspergillus oryzae fungal biomass digestion,suggest that the supplementation of fungal biomass will contribute to improving the rumen digestion by providing necessary nitrogen and energy to the ruminant and microbiota.展开更多
[Objective] The research aimed to isolate the glyphosate-degraded strain and study its degradation characteristics.[Method] A glyphosate-degraded fungal strain A-F02 was isolated from sludge in an aeration tank of a g...[Objective] The research aimed to isolate the glyphosate-degraded strain and study its degradation characteristics.[Method] A glyphosate-degraded fungal strain A-F02 was isolated from sludge in an aeration tank of a glyphosate manufacture.The fungal strain A-F02 was identified according to morphological characteristics and internal transcribed spacer(ITS)region of nuclear ribosomal DNA sequence analysis.The glyphosate-biodegraded characteristics of strain A-F02 and the influencing factors were studied.[Result] The fungal strain A-F02 was identified as Aspergillus oryzae sp..The glyphosate-biodegraded rate was 86.82% in the mineral salt medium with 1 000 mg/L of glyphosate as the sole source of carbon,after being incubated at 30 ℃ and 150 rpm for 7 d.The biodegradation rates and biomass of the A-F02 were the highest under the culture conditions with glucose(0.5%,w/v),pH 7.5,30 ℃ and glyphosate(1 500 mg/L).[Conclusion] The research provided the experimental basis for glyphosate-biodegraded enzyme purification.展开更多
基金the National Science-Technology Supporting Project for the 11th Five-Year Plan (Nos. 2006BAD27B09-6 and 2007BAK36B03)the Key Technology R&D Program of Guangdong Province (Nos. 2007A010900001 and 2008A010900001)
基金Open access funding provided by University of Boras
文摘Background As demand for high quality animal feed continues to raise,it becomes increasingly important to mini-mize the environmental impact of feed production.An appealing sustainable approach to provide feed fractions is to use organic residues from agro-food industry.In this regard,volatile fatty acids(VFAs)such as acetic,propionic and butyric acids,derived from bioconversion of organic residues can be used as precursors for production of micro-bial protein with ruminant feed inclusion potential.This study aims to investigate the in vitro digestibility of the Asper-gillus oryzae edible fungal biomass cultivated on VFAs-derived from anaerobic digestion of residues.The produced fungal protein biomass,along with hay clover silage and rapeseed meal were subjected to various in vitro assays using two-stage Tilley and Terry(TT),gas,and bag methods to evaluate and compare its digestibility for application in ruminant feed.Results The produced fungal biomass contained a higher crude protein(CP)(41%–49%)and rather similar neutral detergent fiber(NDF)(41%–56%)compared to rapeseed meal.The rumen in vitro dry matter digestibility(IVDMD)of the fungal biomass in the TT method ranged from 82%to 88%(statistically similar to that of the gas method(72%to 85%)).The IVDMD of fungal biomass were up to 26%and 40%greater than that of hay clover silage and rapeseed meal,respectively.The type of substrate and bag method had pronounced effect on the fermentation products(ammonium-N(NH4+-N),total gas and VFAs).Fungal biomass digestion resulted in the highest release of NH4+-N(340–540 mg/L)and the ratio of acetate to propionate ratio(3.5)among subjected substrates.Conclusion The results indicate that gas method can be used as a reliable predictor for IVDMD as well as fermenta-tion products.Furthermore,the high IVDMD and fermentation product observed for Aspergillus oryzae fungal biomass digestion,suggest that the supplementation of fungal biomass will contribute to improving the rumen digestion by providing necessary nitrogen and energy to the ruminant and microbiota.
文摘[Objective] The research aimed to isolate the glyphosate-degraded strain and study its degradation characteristics.[Method] A glyphosate-degraded fungal strain A-F02 was isolated from sludge in an aeration tank of a glyphosate manufacture.The fungal strain A-F02 was identified according to morphological characteristics and internal transcribed spacer(ITS)region of nuclear ribosomal DNA sequence analysis.The glyphosate-biodegraded characteristics of strain A-F02 and the influencing factors were studied.[Result] The fungal strain A-F02 was identified as Aspergillus oryzae sp..The glyphosate-biodegraded rate was 86.82% in the mineral salt medium with 1 000 mg/L of glyphosate as the sole source of carbon,after being incubated at 30 ℃ and 150 rpm for 7 d.The biodegradation rates and biomass of the A-F02 were the highest under the culture conditions with glucose(0.5%,w/v),pH 7.5,30 ℃ and glyphosate(1 500 mg/L).[Conclusion] The research provided the experimental basis for glyphosate-biodegraded enzyme purification.