This paper describes the implementation and performance of the virtual assembly support sys-tem (VASS), a new system that can provide designers and assembly process engineers with a simulation and visualization enviro...This paper describes the implementation and performance of the virtual assembly support sys-tem (VASS), a new system that can provide designers and assembly process engineers with a simulation and visualization environment where they can evaluate the assemblability/disassemblability of products, and thereby use a computer to intuitively create assembly plans and interactively generate assembly process charts. Subassembly planning and assembly priority reasoning techniques were utilized to find heuristic information to improve the efficiency of assembly process planning. Tool planning was imple-mented to consider tool requirements in the product design stage. New methods were developed to reduce the computation amount involved in interference checking. As an important feature of the VASS, human interaction was integrated into the whole process of assembly process planning, extending the power of computer reasoning by including human expertise, resulting in better assembly plans and better designs.展开更多
基金Supported by the National High-Tech Research and Development (863) Program of China (Nos. 863-511-910-405 and 863-511-030-003)
文摘This paper describes the implementation and performance of the virtual assembly support sys-tem (VASS), a new system that can provide designers and assembly process engineers with a simulation and visualization environment where they can evaluate the assemblability/disassemblability of products, and thereby use a computer to intuitively create assembly plans and interactively generate assembly process charts. Subassembly planning and assembly priority reasoning techniques were utilized to find heuristic information to improve the efficiency of assembly process planning. Tool planning was imple-mented to consider tool requirements in the product design stage. New methods were developed to reduce the computation amount involved in interference checking. As an important feature of the VASS, human interaction was integrated into the whole process of assembly process planning, extending the power of computer reasoning by including human expertise, resulting in better assembly plans and better designs.