Present paper deals a M/M/1:(∞;GD) queueing model with interdependent controllable arrival and service rates where- in customers arrive in the system according to poisson distribution with two different arrivals rate...Present paper deals a M/M/1:(∞;GD) queueing model with interdependent controllable arrival and service rates where- in customers arrive in the system according to poisson distribution with two different arrivals rates-slower and faster as per controllable arrival policy. Keeping in view the general trend of interdependent arrival and service processes, it is presumed that random variables of arrival and service processes follow a bivariate poisson distribution and the server provides his services under general discipline of service rule in an infinitely large waiting space. In this paper, our central attention is to explore the probability generating functions using Rouche’s theorem in both cases of slower and faster arrival rates of the queueing model taken into consideration;which may be helpful for mathematicians and researchers for establishing significant performance measures of the model. Moreover, for the purpose of high-lighting the application aspect of our investigated result, very recently Maurya [1] has derived successfully the expected busy periods of the server in both cases of slower and faster arrival rates, which have also been presented by the end of this paper.展开更多
针对纯电动汽车动力电池健康状态(state of health,SOH)预测中非线性影响因素多、算法繁杂、难以在单片机开发平台中实现等难点,首先利用累计充电循环次数计量法得到使用循环次数,将SOH与使用循环次数、内阻变化量、电压降值的相关非线...针对纯电动汽车动力电池健康状态(state of health,SOH)预测中非线性影响因素多、算法繁杂、难以在单片机开发平台中实现等难点,首先利用累计充电循环次数计量法得到使用循环次数,将SOH与使用循环次数、内阻变化量、电压降值的相关非线性关系转换成离散的二维数据表,依据使用条件,采用二分查表法获得不同估计方法下SOH值;再将使用循环次数、电压降值和内阻变化量作为输入量,以相应SOH的权重作为输出,利用T-S模糊控制建立SOH动态预测模型,根据权重和边界条件计算得到SOH.仿真结果表明,所提方法最大预测误差4.3%,响应时间55ms内,预测效果比现有方法显著提高.展开更多
This paper presents a new solution to the inverse problem of linear optimal regulators to minimize a cost function and meet the requirements of relative stability in the presence of a constant but unknown disturbance....This paper presents a new solution to the inverse problem of linear optimal regulators to minimize a cost function and meet the requirements of relative stability in the presence of a constant but unknown disturbance. A state feedback matrix is developed using Lyapunov’s second method. Moreover, the relationships between the state feedback matrix and the cost function are obtained, and a formula to solve the weighting matrices is suggest- ed. The developed method is applied successfully to design the horizontal loops in the inertial navigation system.展开更多
文摘Present paper deals a M/M/1:(∞;GD) queueing model with interdependent controllable arrival and service rates where- in customers arrive in the system according to poisson distribution with two different arrivals rates-slower and faster as per controllable arrival policy. Keeping in view the general trend of interdependent arrival and service processes, it is presumed that random variables of arrival and service processes follow a bivariate poisson distribution and the server provides his services under general discipline of service rule in an infinitely large waiting space. In this paper, our central attention is to explore the probability generating functions using Rouche’s theorem in both cases of slower and faster arrival rates of the queueing model taken into consideration;which may be helpful for mathematicians and researchers for establishing significant performance measures of the model. Moreover, for the purpose of high-lighting the application aspect of our investigated result, very recently Maurya [1] has derived successfully the expected busy periods of the server in both cases of slower and faster arrival rates, which have also been presented by the end of this paper.
文摘针对纯电动汽车动力电池健康状态(state of health,SOH)预测中非线性影响因素多、算法繁杂、难以在单片机开发平台中实现等难点,首先利用累计充电循环次数计量法得到使用循环次数,将SOH与使用循环次数、内阻变化量、电压降值的相关非线性关系转换成离散的二维数据表,依据使用条件,采用二分查表法获得不同估计方法下SOH值;再将使用循环次数、电压降值和内阻变化量作为输入量,以相应SOH的权重作为输出,利用T-S模糊控制建立SOH动态预测模型,根据权重和边界条件计算得到SOH.仿真结果表明,所提方法最大预测误差4.3%,响应时间55ms内,预测效果比现有方法显著提高.
基金Project supported by the Hong Kong Polytechnic University(A/C 350/555)
文摘This paper presents a new solution to the inverse problem of linear optimal regulators to minimize a cost function and meet the requirements of relative stability in the presence of a constant but unknown disturbance. A state feedback matrix is developed using Lyapunov’s second method. Moreover, the relationships between the state feedback matrix and the cost function are obtained, and a formula to solve the weighting matrices is suggest- ed. The developed method is applied successfully to design the horizontal loops in the inertial navigation system.