Our previous experiment revealed that apex-removed plants have larger root systems but a lower K+-uptake rates than intact tobacco plants. Since the apex is not only a center of growth and metabolism, but also an imp...Our previous experiment revealed that apex-removed plants have larger root systems but a lower K+-uptake rates than intact tobacco plants. Since the apex is not only a center of growth and metabolism, but also an important place of auxin synthesis and export, the aims of this study were to distinguish whether the apex demand or auxin synthesized in the apex regulates assimilate and nutrients partitioning within plant, and to explain the reason for the lower K+-uptake rate of the apex-removed plant. In comparison with the control plant, covering the shoot apex with a black transparent plastic bag reduced net increases in dry matter and nutrients; however, the distribution of the dry matter and nutrients between shoot and roots and nutrient-uptake rates were not changed. Removal of the shoot apex shifted the dry mass and nutrients distributions to roots, and reduced the rate of nutrient uptake. Application of 1-naphthylacetic acid (NAA) could partly replace the role of the removed apex, stimulated assimilate and nutrient deposition into the treated tissue, and enhanced the reduced plasma membrane ATPase activity of roots to the control level. However, treatment of the apex-removed plants with NAA could not rescue the reduced nutrient uptake rate and the shifted assimilates and nutrients partitioning caused by excision of the apex. Higher nutrient uptake rate of the intact plants could not be explained by root growth parameters, such as total root surface area and number of root tips. The results from the present study indicate that strong apex demand determined assimilates and nutrients partitioning and nutrient-uptake rate in tobacco (Nicotiana tabacum) plants.展开更多
Plant growth, productivity, and seed yield depend on the efficient uptake, metabolism, and allocation of nutrients. Nitrogen is an essential macronutrient needed in high amounts. Plants have evolved efficient and sele...Plant growth, productivity, and seed yield depend on the efficient uptake, metabolism, and allocation of nutrients. Nitrogen is an essential macronutrient needed in high amounts. Plants have evolved efficient and selective transport systems for nitrogen uptake and transport within the plant to sustain development, growth, and finally reproduction. This review summarizes current knowledge on membrane proteins involved in transport of amino acids and peptides. A special emphasis was put on their function in planta. We focus on uptake of the organic nitrogen by the root, source-sink partitioning, and import into floral tissues and seeds.展开更多
The concept of retrograde control of nuclear gene expression assumes the generation of signals inside the chloroplasts, which are either released from or sensed inside of the organelle. In both cases, downstream signa...The concept of retrograde control of nuclear gene expression assumes the generation of signals inside the chloroplasts, which are either released from or sensed inside of the organelle. In both cases, downstream signaling path- ways lead eventually to a differential regulation of nuclear gene expression and the production of proteins required in the chloroplast. This concept appears reasonable as the majority of the over 3000 predicted plastidial proteins are encoded by nuclear genes. Hence, the nucleus needs information on the status of the chloroplasts, such as during acclimation responses, which trigger massive changes in the protein composition of the thylakoid membrane and in the stroma. Here, we propose an additional control mechanism of nuclear- and plastome-encoded photosynthesis genes, taking advantage of pathways involved in sugar- or hormonal signaling. Sugars are major end products of photosynthesis and their con- tents respond very sensitively to changes in light intensities. Based on recent findings, we ask the question as to whether the carbohydrate status outside the chloroplast can be directly sensed within the chloroplast stroma. Sugars might syn- chronize the responsiveness of both genomes and thereby help to coordinate the expression of piastome- and nuclear- encoded photosynthesis genes in concert with other, more specific retrograde signals.展开更多
基金Supported by the National Natural Science Foundation of China(30070452,30370842)the Ministry of Agriculture 948 Program(2003-Z53).
文摘Our previous experiment revealed that apex-removed plants have larger root systems but a lower K+-uptake rates than intact tobacco plants. Since the apex is not only a center of growth and metabolism, but also an important place of auxin synthesis and export, the aims of this study were to distinguish whether the apex demand or auxin synthesized in the apex regulates assimilate and nutrients partitioning within plant, and to explain the reason for the lower K+-uptake rate of the apex-removed plant. In comparison with the control plant, covering the shoot apex with a black transparent plastic bag reduced net increases in dry matter and nutrients; however, the distribution of the dry matter and nutrients between shoot and roots and nutrient-uptake rates were not changed. Removal of the shoot apex shifted the dry mass and nutrients distributions to roots, and reduced the rate of nutrient uptake. Application of 1-naphthylacetic acid (NAA) could partly replace the role of the removed apex, stimulated assimilate and nutrient deposition into the treated tissue, and enhanced the reduced plasma membrane ATPase activity of roots to the control level. However, treatment of the apex-removed plants with NAA could not rescue the reduced nutrient uptake rate and the shifted assimilates and nutrients partitioning caused by excision of the apex. Higher nutrient uptake rate of the intact plants could not be explained by root growth parameters, such as total root surface area and number of root tips. The results from the present study indicate that strong apex demand determined assimilates and nutrients partitioning and nutrient-uptake rate in tobacco (Nicotiana tabacum) plants.
基金Research in M.T.'s laboratory was supported by the US National Science Foundation (IOS 0135344 and IOS 0448506) and by the Agricultural and Food Research Initiative Competitive Grant no. 2010-65115-20382 from the USDA National Institute of Food and Agriculture. Work in D.R.'s laboratory was supported by grants from the Swiss National Science Foundation 3100A0-107507 and 31003A 127340, and EU Marie Curie Research Training Network 'VaTEP - Vacuolar Transport Equipment for Growth Regulation of Plants' (M RTN-CT-2006-035833). No conflict of interest declared.
文摘Plant growth, productivity, and seed yield depend on the efficient uptake, metabolism, and allocation of nutrients. Nitrogen is an essential macronutrient needed in high amounts. Plants have evolved efficient and selective transport systems for nitrogen uptake and transport within the plant to sustain development, growth, and finally reproduction. This review summarizes current knowledge on membrane proteins involved in transport of amino acids and peptides. A special emphasis was put on their function in planta. We focus on uptake of the organic nitrogen by the root, source-sink partitioning, and import into floral tissues and seeds.
文摘The concept of retrograde control of nuclear gene expression assumes the generation of signals inside the chloroplasts, which are either released from or sensed inside of the organelle. In both cases, downstream signaling path- ways lead eventually to a differential regulation of nuclear gene expression and the production of proteins required in the chloroplast. This concept appears reasonable as the majority of the over 3000 predicted plastidial proteins are encoded by nuclear genes. Hence, the nucleus needs information on the status of the chloroplasts, such as during acclimation responses, which trigger massive changes in the protein composition of the thylakoid membrane and in the stroma. Here, we propose an additional control mechanism of nuclear- and plastome-encoded photosynthesis genes, taking advantage of pathways involved in sugar- or hormonal signaling. Sugars are major end products of photosynthesis and their con- tents respond very sensitively to changes in light intensities. Based on recent findings, we ask the question as to whether the carbohydrate status outside the chloroplast can be directly sensed within the chloroplast stroma. Sugars might syn- chronize the responsiveness of both genomes and thereby help to coordinate the expression of piastome- and nuclear- encoded photosynthesis genes in concert with other, more specific retrograde signals.