Both new plant type (NPT) and intersubspecific hybrid rice (IHR) had large sink size (total number of spikelets per m2), however, poor grain filling limited their potential in the grain yield. Compared to the three-li...Both new plant type (NPT) and intersubspecific hybrid rice (IHR) had large sink size (total number of spikelets per m2), however, poor grain filling limited their potential in the grain yield. Compared to the three-line indica hybrid of Shanyou 63 (CK), NPT and IHR showed higher photosynthetic potential, higher dry matter accumulation and higher ratio of dry weight to spikelets (total dry wt./total number of spikelets) from heading to harvest. But both exhibited a low export percentage and transfer ratio of assimilates, low partitioning of 14C to grains from labeled flag leaves, low harvest indices and low physiological activities (IAA content and activities of ATPase and starch synthase) of grains at early grain-filling stage. The physiological activities of grains at early filling stage were significantly correlated with the export percentage and transfer ratio of assimilates, ripened-grain percentage and grain plumpness (r = 0.85 - 0.95). The source-sink ratio (dry matter wt./spikelet and nonstructural carbohydrate/spikelet) at heading was positively correlated with physiological activities of grains (r = 0. 84 - 0. 97 ). It is suggested that low physiological activities of grains at early filling stage is attributed to low source-sink ratio at heading, and the low sink activity weakens the ability to remobilize assimilates into grains, and leads to poor grain filling in NPT and IHR.展开更多
文摘Both new plant type (NPT) and intersubspecific hybrid rice (IHR) had large sink size (total number of spikelets per m2), however, poor grain filling limited their potential in the grain yield. Compared to the three-line indica hybrid of Shanyou 63 (CK), NPT and IHR showed higher photosynthetic potential, higher dry matter accumulation and higher ratio of dry weight to spikelets (total dry wt./total number of spikelets) from heading to harvest. But both exhibited a low export percentage and transfer ratio of assimilates, low partitioning of 14C to grains from labeled flag leaves, low harvest indices and low physiological activities (IAA content and activities of ATPase and starch synthase) of grains at early grain-filling stage. The physiological activities of grains at early filling stage were significantly correlated with the export percentage and transfer ratio of assimilates, ripened-grain percentage and grain plumpness (r = 0.85 - 0.95). The source-sink ratio (dry matter wt./spikelet and nonstructural carbohydrate/spikelet) at heading was positively correlated with physiological activities of grains (r = 0. 84 - 0. 97 ). It is suggested that low physiological activities of grains at early filling stage is attributed to low source-sink ratio at heading, and the low sink activity weakens the ability to remobilize assimilates into grains, and leads to poor grain filling in NPT and IHR.