期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Overexpression of vascular endothelial growth factor enhances the neuroprotective effects of bone marrow mesenchymal stem cell transplantation in ischemic stroke 被引量:2
1
作者 Cui Liu Zhi-Xiang Yang +6 位作者 Si-Qi Zhou Ding Ding Yu-Ting Hu Hong-Ning Yang Dong Han Shu-Qun Hu Xue-Mei Zong 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第6期1286-1292,共7页
Although bone marrow mesenchymal stem cells(BMSCs)might have therapeutic potency in ischemic stroke,the benefits are limited.The current study investigated the effects of BMSCs engineered to overexpress vascular endot... Although bone marrow mesenchymal stem cells(BMSCs)might have therapeutic potency in ischemic stroke,the benefits are limited.The current study investigated the effects of BMSCs engineered to overexpress vascular endothelial growth factor(VEGF)on behavioral defects in a rat model of transient cerebral ischemia,which was induced by middle cerebral artery occlusion.VEGF-BMSCs or control grafts were injected into the left striatum of the infarcted hemisphere 24 hours after stroke.We found that compared with the stroke-only group and the vehicle-and BMSCs-control groups,the VEGF-BMSCs treated animals displayed the largest benefits,as evidenced by attenuated behavioral defects and smaller infarct volume 7 days after stroke.Additionally,VEGF-BMSCs greatly inhibited destruction of the blood-brain barrier,increased the regeneration of blood vessels in the region of ischemic penumbra,and reducedneuronal degeneration surrounding the infarct core.Further mechanistic studies showed that among all transplant groups,VEGF-BMSCs transplantation induced the highest level of brain-derived neurotrophic factor.These results suggest that BMSCs transplantation with vascular endothelial growth factor has the potential to treat ischemic stroke with better results than are currently available. 展开更多
关键词 bone marrow mesenchymal stem cell brain-derived neurotrophic factor CD31 microtubule associated protein 2 middle cerebral artery occlusion stroke transplantation vascular endothelial growth factor
下载PDF
T cells promote the regeneration of neural precursor cells in the hippocampus of Alzheimer's disease mice 被引量:7
2
作者 Jing Liu Yuxin Ma +4 位作者 Sumin Tian Li Zhang Mengmeng Zhao Yaqiong Zhang Dachuan Xu 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第16期1541-1547,共7页
Alzheimer's disease is closely associated with disorders of neurogenesis in the brain, and growing evidence supports the involvement of immunological mechanisms in the development of the disease. However, at present,... Alzheimer's disease is closely associated with disorders of neurogenesis in the brain, and growing evidence supports the involvement of immunological mechanisms in the development of the disease. However, at present, the role of T cells in neuronal regeneration in the brain is unknown. We injected amyloid-beta 1-42 peptide into the hippocampus of six BALB/c wild-type mice and six BALB/c-nude mice with T-cell immunodeficiency to establish an animal model of Alzhei- mer's disease. A further six mice of each genotype were injected with same volume of normal saline. Immunohistochemistry revealed that the number of regenerated neural progenitor cells in the hippocampus of BALB/c wild-type mice was significantly higher than that in BALB/c-nude mice. Quantitative fluorescence PCR assay showed that the expression levels of peripheral T cell-associated cytokines (interleukin-2, interferon-y) and hippocampal microglia-related cyto- kines (interleukin-113, tumor necrosis factor-a) correlated with the number of regenerated neural progenitor cells in the hippocampus. These results indicate that T cells promote hippocampal neurogenesis in Alzheimer's disease and T-cell immunodeficiency restricts neuronal regeneration in the hippocampus. The mechanism underlying the promotion of neuronal regeneration by T cells is mediated by an increased expression of peripheral T cells and central microglial cytokines in Alzheimer's disease mice. Our findings provide an experimental basis for understanding the role of T cells in Alzheimer's disease. 展开更多
关键词 nerve regeneration neurodegeneration Alzheimer's disease beta-amyloid 1-42 pep-tide neuronal precursors MICE microglia INTERLEUKIN-2 INTERFERON-GAMMA INTERLEUKIN-1Β tumornecrosis factor-or microtubule associated protein NSFC grant neural regeneration
下载PDF
Melatonin combined with exercise cannot alleviate cerebral injury in a rat model of focal cerebral ischemia/reperfusion injury 被引量:2
3
作者 Seunghoon Lee Jinhee Shin +8 位作者 Minkyung Lee Yunkyung Hong Sang-Kil Lee Youngjeon Lee Tserentogtokh Lkhagvasuren Dong-Wook Kim Young-Ae Yang Kyu-Tae Chang Yonggeun Hong 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第13期993-999,共7页
Previous studies have demonstrated that melatonin combined with exercise can alleviate secondary damage after spinal cord injury in rats. Therefore, it is hypothesized that melatonin combined with exercise can also al... Previous studies have demonstrated that melatonin combined with exercise can alleviate secondary damage after spinal cord injury in rats. Therefore, it is hypothesized that melatonin combined with exercise can also alleviate ischemic brain damage. In this study, adult rats were subjected to right middle cerebral artery occlusion after receiving 10 mg/kg melatonin or vehicle subcutaneously twice daily for 14 days. Forced exercise using an animal treadmill was performed at 20 m/min for 30 minutes per day for 6 days prior to middle cerebral artery occlusion. After middle cerebral artery occlusion, each rat received melatonin combined with exercise, melatonin or exercise alone equally for 7 days until sacrifice. Interestingly, rats receiving melatonin combined with exercise exhibited more severe neurological deficits than those receiving melatonin or exercise alone. Hypoxia-inducible factor la mRNA in the brain tissue was upregulated in rats receiving melatonin combined with exercise. Similarly, microtubule associated protein-2 mRNA expression was significantly upregulated in rats receiving melatonin alone. Chondroitin sulfate proteoglycan 4 (NG2) mRNA expression was significantly decreased in rats receiving melatonin combined with exercise as well as in rats receiving exercise alone. Furthermore, neural cell loss in the primary motor cortex was significantly reduced in rats receiving melatonin or exercise alone, but the change was not observed in rats receiving melatonin combined with exercise. These findings suggest that excessive intervention with melatonin, exercise or their combination may lead to negative effects on ischemia/reperfusion-induced brain damage. 展开更多
关键词 wfocal cerebral ischemiaJreperfusion MELATONIN EXERCISE neurological function brain tissue loss microtubule associated protein-2 chondroitin sulfate proteoglycan 4 NG2 hypoxia-inducible factor1 alpha neural regeneration
下载PDF
Isolation,cultivation and identification of brain glioma stem cells by magnetic bead sorting 被引量:1
4
作者 Xiuping Zhou Chao Zheng +3 位作者 Qiong Shi Xiang Li Zhigang Shen Rutong Yu 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第13期985-992,共8页
This study describes a detailed process for obtaining brain glioma stem cells from freshly dissected human brain glioma samples using an immunomagnetic bead technique combined with serum-free media pressure screening.... This study describes a detailed process for obtaining brain glioma stem cells from freshly dissected human brain glioma samples using an immunomagnetic bead technique combined with serum-free media pressure screening. Furthermore, the proliferation, differentiation and self-renewal biological features of brain glioma stem cells were identified. Results showed that a small number of CD133 positive tumor cells isolated from brain glioma samples survived as a cell suspension in serum-free media and proliferated. Subcultured CD133 positive cells maintained a potent self-renewal and proliferative ability, and expressed the stem cell-specific markers CD133 and nestin. After incubation with fetal bovine serum, the number of glial fibrillary acidic protein and microtubule associated protein 2 positive cells increased significantly, indicating that the cultured brain glioma stem cells can differentiate into astrocytes and neurons. Western blot analysis showed that tumor suppressor phosphatase and tensin homolog was highly expressed in tumor spheres compared with the differentiated tumor cells. These experimental findings indicate that the immunomagnetic beads technique is a useful method to obtain brain glioma stem cells from human brain tumors. 展开更多
关键词 brain glioma stem cells CD133 NESTIN immunomagnetic beads glial fibrillary acidic protein microtubule associated protein 2 neural regeneration
下载PDF
Effects of repetitive transcranial magnetic stimulation on adenosine triphosphate content and microtubule associated protein-2 expression after cerebral ischemia-reperfusion injury in rat brain 被引量:20
5
作者 FENG Hong-lin YAN Li CUI Li-ying 《Chinese Medical Journal》 SCIE CAS CSCD 2008年第14期1307-1312,共6页
Background Repetitive transcranial magnetic stimulation (rTMS) research has mainly been focused on the therapeutic effect of psychiatric disorders and Parkinson's disease. A few studies have shown that rTMS might p... Background Repetitive transcranial magnetic stimulation (rTMS) research has mainly been focused on the therapeutic effect of psychiatric disorders and Parkinson's disease. A few studies have shown that rTMS might protect against delayed neuronal death induced by transient ischemia, enhance long-term potentiation in ischemic conditions and affect regional brain blood flow and metabolism. The aim of this study was to determine the effects of repetitive transcranial magnetic stimulation (rTMS) on adenosine triphosphate (ATP) content and microtubule associated protein-2 (MAP-2) expression in rat brain after middle cerebral artery occlusion (MCAO)/reperfusion. Methods To study the effects of different timecourses of rTMS on ATP content and MAP-2 expression, 90 rats were randomly divided into three groups (30 rats in each group). To study the effects of multiple rTMS parameters on ATP content and MAP-2 expression, the rats in each group were further divided into six subgroups (five rats each). The rats were sacrificed at 1-hour, 24-hour and 48-hour intervals after reperfusion, and the brain tissues were collected for the detection of ATP and MAP-2. Results rTMS could significantly increase ATP content and MAP-2 expression in the left brain following ischemic insult (P 〈0.01) and different rTMS parameters had different effects on the ATP level and the MAP-2 expression in the left striatum. A high-frequency rTMS played an important role in MAP-2 expression and ATP preservation. Conclusions This study revealed that rTMS induced significant increase of ATP content and MAP-2 expression in the injured area of the brain, suggesting that the regulation of both ATP and MAP-2 may be involved in the biological mechanism of the effect of rTMS on neural recovery. Therefore, rTMS may become a potential adjunctive therapy for ischemic cerebrovascular disease. 展开更多
关键词 transcranial magnetic stimulation REPETITIVE cerebral ischemia-reperfusion injury adenosine triphosphate microtubule associated protein-2
原文传递
Cardiac proteomics reveals the potential mechanism of microtubule associated protein 4 phosphorylation-induced mitochondrial dysfunction 被引量:1
6
作者 Lingfei Li Junhui Zhang +2 位作者 Qiong Zhang Yuesheng Huang Jiongyu Hu 《Burns & Trauma》 SCIE 2019年第1期66-74,共9页
Background:Our previous work suggested that microtubule associated protein 4(MAP4)phosphorylation led to mitochondrial dysfunction in MAP4 phosphorylation mutant mice with cardiomyopathy,but the detailed mechanism was... Background:Our previous work suggested that microtubule associated protein 4(MAP4)phosphorylation led to mitochondrial dysfunction in MAP4 phosphorylation mutant mice with cardiomyopathy,but the detailed mechanism was still unknown.Thus,the aim of this study was to investigate the potential mechanism involved in mitochondrial dysfunction responsible for cardiomyopathy.Methods:The present study was conducted to explore the potential mechanism underlying the mitochondrial dysfunction driven by MAP4 phosphorylation.Strain of mouse that mimicked constant MAP4 phosphorylation(S737 and S760)was generated.The isobaric tag for relative and absolute quantitation(iTRAQ)analysis was applied to the heart tissue.Gene Ontology(GO),Kyoto Encyclopedia of Genes and Genomes(KEGG),and protein-protein interaction(PPI)were all analyzed on the basis of differential expressed proteins(DEPs).Results:Among the 72 cardiac DEPs detected between the two genotypes of mice,12 were upregulated and 60 were downregulated.GO analysis showed the biological process,molecular function,and cellular component of DEPs,and KEGG enrichment analysis linked DEPs to 96 different biochemical pathways.In addition,the PPI network was also extended on the basis of DEPs as the seed proteins.Three proteins,including mitochondrial ubiquitin ligase activator of NF-κB 1,reduced form of nicotinamide adenine dinucleotide(NADH)-ubiquinone oxidoreductase 75 kDa subunit,mitochondrial and growth arrest,and DNA-damage-inducible proteins-interacting protein 1,which play an important role in the regulation of mitochondrial function,may correlate with MAP4 phosphorylationinduced mitochondrial dysfunction.Western blot was used to validate the expression of the three proteins,which was consistent with iTRAQ experiments.Conclusions:These findings revealed that the DEPs caused by MAP4 phosphorylation in heart tissue using iTRAQ technique and may provide clues to uncover the potential mechanism of MAP4 phosphorylation-induced mitochondrial dysfunction. 展开更多
关键词 Microtubule associated protein 4 MITOCHONDRIA Isobaric tag for relative and absolute quantitation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部