Objective:To investigate the mechanism by which Astragalus mongholicus Bunge(AM),and Angelica sinensis Diels(AS)act in interstitial lung disease(ILD)based on computational prediction.Methods:We screened the ingredient...Objective:To investigate the mechanism by which Astragalus mongholicus Bunge(AM),and Angelica sinensis Diels(AS)act in interstitial lung disease(ILD)based on computational prediction.Methods:We screened the ingredients of AM and AS in PubMed,the Web of Science,China National Knowledge Infrastructure(CNKI)Databases,etc.Then obtained the potential effective components.By sharing the same molecular with ILD,we got the possible target genes for ILD treatment and constructed components–targets–disease network with Cytoscape software.The CTD(Comparative Toxicogenomics Database)database was used for GO and KEGG enrichment analysis of these target genes.Results:59 active ingredients that can be druggable were chosen from AM,67 active ingredients were chosen from AS.77 overlapping target genes for AM and ILD and 36 overlapping target genes for AS and ILD were acquired.The hub targets of AM were PTGS2,PTGS1,CDK2,MAOA,ESR1,TOP2A,GSK3B,ESR2,PPARG,NOS2,The hub targets of AS were PTGS2,GABRA1,PTGS1,CHRM1,SLC6A2,ADRA1B,ADRAIA,ADRB2,CHRM3,GABRA2,CHRM2.Quercetin,kaempferol,daidzein,pavilion,7-Hydroxycoumarin,and 5-Hydroxycoumarin were the main active ingredients which have more effective targets.Prediction of the protein-protein interaction network showed PTGS2,GSK3B,PPARG,etc.,were the important predicted targets.The enriched KEGG pathways,including the Immune System,Metabolism of lipids and lipoproteins,Cytokine Signaling in the Immune system,Generic Transcription Pathway,The interleukin pathway,Metabolism of proteins,PI3K-Akt signaling pathway,Metabolic pathways,Innate Immune System,Neuroactive ligand-receptor interaction,Metabolism,GPCR downstream signaling,Amine ligand-binding receptors,Class A/1,Calcium signaling pathway.Molecular docking showed that quercetin,kaempferol,daidzein,pavilion,7-Hydroxycoumarin,5-Hydroxycoumarin had good binding activities with PTGS2 and GSK3B,which mainly mediated PI3K/Akt and other important signaling pathways in the pathogenesis of ILD.Conclusion:The components in AS and AM share some common targets,such as PTGS2.AM and AS may ameliorate ILD through the PI3K-Akt signaling pathway which is mediated by GSK3B.PTGS2,PPARG may also be vital target genes in the treatment of ILD with AM and AS.展开更多
Objective:To investigate the mechanism by which Astragalus mongholicus Bunge(AM),and Angelica sinensis Diels(AS)act in interstitial lung disease(ILD)based on computational prediction.Methods:We screened the ingredient...Objective:To investigate the mechanism by which Astragalus mongholicus Bunge(AM),and Angelica sinensis Diels(AS)act in interstitial lung disease(ILD)based on computational prediction.Methods:We screened the ingredients of AM and AS in PubMed,the Web of Science,China National Knowledge Infrastructure(CNKI)Databases,etc.Then obtained the potential effective components.By sharing the same molecular with ILD,we got the possible target genes for ILD treatment and constructed components–targets–disease network with Cytoscape software.The CTD(Comparative Toxicogenomics Database)database was used for GO and KEGG enrichment analysis of these target genes.Results:59 active ingredients that can be druggable were chosen from AM,67 active ingredients were chosen from AS.77 overlapping target genes for AM and ILD and 36 overlapping target genes for AS and ILD were acquired.The hub targets of AM were PTGS2,PTGS1,CDK2,MAOA,ESR1,TOP2A,GSK3B,ESR2,PPARG,NOS2,The hub targets of AS were PTGS2,GABRA1,PTGS1,CHRM1,SLC6A2,ADRA1B,ADRAIA,ADRB2,CHRM3,GABRA2,CHRM2.Quercetin,kaempferol,daidzein,pavilion,7-Hydroxycoumarin,and 5-Hydroxycoumarin were the main active ingredients which have more effective targets.Prediction of the protein-protein interaction network showed PTGS2,GSK3B,PPARG,etc.,were the important predicted targets.The enriched KEGG pathways,including the Immune System,Metabolism of lipids and lipoproteins,Cytokine Signaling in the Immune system,Generic Transcription Pathway,The interleukin pathway,Metabolism of proteins,PI3K-Akt signaling pathway,Metabolic pathways,Innate Immune System,Neuroactive ligand-receptor interaction,Metabolism,GPCR downstream signaling,Amine ligand-binding receptors,Class A/1,Calcium signaling pathway.Molecular docking showed that quercetin,kaempferol,daidzein,pavilion,7-Hydroxycoumarin,5-Hydroxycoumarin had good binding activities with PTGS2 and GSK3B,which mainly mediated PI3K/Akt and other important signaling pathways in the pathogenesis of ILD.Conclusion:The components in AS and AM share some common targets,such as PTGS2.AM and AS may ameliorate ILD through the PI3K-Akt signaling pathway which is mediated by GSK3B.PTGS2,PPARG may also be vital target genes in the treatment of ILD with AM and AS.展开更多
To evaluate the antioxidant activities of different chemical constituents from Astragalus mongholicus Bunge and their protection against xanthine (XA)/xanthine oxidase (XO)-induced toxicity in PC12 cells. Methods ...To evaluate the antioxidant activities of different chemical constituents from Astragalus mongholicus Bunge and their protection against xanthine (XA)/xanthine oxidase (XO)-induced toxicity in PC12 cells. Methods The compounds of Astragalus mongholicus Bunge were isolated by chromatography and the structures were elucidated on the basis of spectral data interpretation. Their antioxidant activities were detected by 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activities in a cell-free system. Meanwhile, the effects against XA/XO-induced toxicity were assessed using MTT assay in PC12 cells. Results Ten principal constituents were isolated and identified as formononetin (Ⅰ), ononin (Ⅱ), calycosin (Ⅲ), calycosin-7-O-β-D-glucoside (Ⅳ), 9,10-dimethoxypterocarpan-3-O-β-D-glucoside (Ⅴ), adenosine (Ⅵ), pinitol (Ⅶ), daucosterol (Ⅷ), β-sitoster (Ⅸ) and saccharose (Ⅹ) from Astragalus mongholicus Bunge. The compounds Ⅰ, Ⅲ, and Ⅳ scavenged DPPH free radicals in vitro. Formononetin and calycosin were found to inhibit XA/XO-induced cell injury significantly, with an estimated EC50 of 50 ng/mL. Conclusion Compound Ⅲ, Ⅵ, and Ⅶ are first reported in this plant. Calycosin exhibits the most potent antioxidant activity both in the cell-free system and in the cell system.展开更多
Objective To further investigate the neuroprotective effects of five isoflavonoids from Astragalus mongholicus on xanthine (XA)/xanthine oxidase (XO)-induced injury to PC12 cells. Methods PC12 cells were damaged b...Objective To further investigate the neuroprotective effects of five isoflavonoids from Astragalus mongholicus on xanthine (XA)/xanthine oxidase (XO)-induced injury to PC12 cells. Methods PC12 cells were damaged by XA/XO. The activities of antioxidant enzymes, MTT, LDH, and GSH assays were used to evaluate the protection of these five isofavonoids. Contents of Bcl-2 family proteins were determined with flow cytometry. Results Among the five isoflavonoids including formononetin, ononin, 9, 10-dimethoxypterocarpan-3-O-β-D-glucoside, calycosin and calycosin-7-O-glucoside, calycosin and calycosin-7-O-glucoside were found to inhibit XA/XO-induced injury to PC12 cells. Their ECs0values of formononetin and calycosin were 0.05 μg/mL. Moreover, treatment with these three isoflavonoids prevented a decrease in the activities of antioxidant enzymes, superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), while formononetin and calycosin could prevent a significant deletion of GSH. In addition, only calycosin and calycosin-7-O-glucoside were shown to inhibit XO activity in cell-free system, with an approximate IC50 value of 10 μg/mL and 50 μg/mL. Formononetin and calycosin had no significant infuence on Bcl-2 or Bax protein contents. Conclusion Neuroprotection of formononetin, calycosin and calycosin-7-O-glucoside may be mediated by increasing endogenous antioxidants, rather by inhibiting XO activities or by scavenging free radicals.展开更多
BACKGROUND: The pharmacological action of traditional Chinese medicine compound is the comprehensive effect of the various ingredients, and the interactions of various ingredients are closely correlated with the final...BACKGROUND: The pharmacological action of traditional Chinese medicine compound is the comprehensive effect of the various ingredients, and the interactions of various ingredients are closely correlated with the final effect. In order to reveal the compatibility mechanism of BHD's prescription in treating and preventing ischemic cerebrovascular disease, we needed explore the effect and relation of ingredients in the prescription. OBJECTIVE: To observe the effect of Buyang Huanwu decoction (BHD) and Astragalus mongholicus on the activity of platelet activating factor receptor (PAFR) in the platelet of rabbits in vitro, and investigate the mechanism of Astragalus mongholicus. DESIGN: A decomposed recipes study. SETTING: Guangzhou University of Traditional Chinese Medicine. MATERIALS: Five New Zealand rabbits, weighing 2-3 kg, both sexes, were used. BHD was composed of Sheng Huang Qi 120 g, Dang Gui Wei 6 g, Chi Shao 4.5 g, Chuan Xiong 3 g, Di Long 3 g, Tao Ren 3 g, Hong Hua 3 g. The prescription for activating blood circulation consisted of Dang Gui Wei 6 g, Chi Shao 4.5 g, Chuan Xiong 3 g, Di Long 3 g, Tao Ren 3 g and Hong Hua 3 g. The prescription for invigorating qi consisted of 120 g Sheng Huang Qi. The prepared herbal pieces were purchased from the traditional Chinese medicine Dispensary of Foshan Second People's Hospital, and appraised by Professor Xu from Science of Chinese Materia Medica College, Guangzhou University of Traditional Chinese Medicine. 3H-PAF was supplied by Amersham Co., Ltd. (specific activity: 6. 475 TBq/mmol; batch number: 200402); PAF standard by Biomol Co., Ltd. (batch number: P1318V). METHODS: The experiments were carried out in the Laboratory of Nuclear Medicine, Guangzhou University of Traditional Chinese Medicine from September to December 2004. ① Injections of BHD, prescriptions for activating blood circulation and invigorating qi were prepared by the decoction and alcohol sedimentation technique. Rabbit common carotid artery blood (40 mL) was drawn via intubation to prepare platelet suspension of (0.8-1.0)×1010 L-1. ② Determination of 3H-PAF and washed PAFR binding: The general combination tube (T) contained washed platelet-rich plasma (WPRP) 380 μL + 3H-PAF (0.35 nmol/L)10 μL+distilled water 5 μL; The nonspecific binding tube (P) contained WPRP 380 μL+3H-PAF(0.35 nmol/L)10 μL+cold PAF (1 μmol/L) 5 μL; The sample tube (Y) contained WPRP 380 μL+3H-PAF(0.35 nmol/L)10 μL+experimental medicine (injection of BHD, prescriptions for activating blood circulation or invigorating qi) 5 μL. The test was conducted for three times for each sample in the same way as mentioned above. The samples were shaken on the oscillator for 30 s, then bathed at 25 ℃ for 40 minutes, and the reaction was terminated with cold Tris buffer containing 0.1% BSA, multichannel cell detachment separator was used for vacuum suction to filter the separated free 3H-PAF, and the filter paper was washed with cold Tris buffer for four times, then dried in the baking oven (80 ℃) for 1 hour, and placed in xylol liquid scintillator, and the radioactivity was determined automatically by the liquid scintillation detector. The mean of the three parallel tubes was calculated. The specific binging inhibition rate was calculated: SBIR=[(T-Y)/(T-P)]×100%]. ③ Univariate analysis of variance was conducted. And for comparison of each paired groups, the q test was adopted. MAIN OUTCOME MEASURES: Effect of BHD whole prescription, prescriptions for activating blood circulation and invigorating qi on the specific binding inhibition rate of 3H-PAF and PAFR. RESULTS: BHD, prescriptions for activating blood circulation and invigorating qi were all able to inhibit the specific binding of 3H-PAF to PAFR, the specific blinding inhibition rates were (45.90±7.50)%, (97.90±1.84)% and (26.75±2.48)%, respectively, and there were significant differences between every two groups (P < 0.01). CONCLUSION: Single Astragalus mongholicus (120 g) can inhibit the specific blinding of PAFR in the platelet of the rabbit with 3H-PAF, but the combination of Astragalus mongholicus with the drugs for activating blood circulation in BHD can significantly decrease the inhibiting action of the latter on PAFR activity of the platelet, reflecting the combined mechanism of 'removing blood stasis without injuring the vital qi' in BHD.展开更多
Astragalus membranaceus var.mongholicus(AMM),a member of the Leguminosae,is one of the most important medicinal plants worldwide.The dried roots of AMM have a wide range of pharmacological effects and are a traditiona...Astragalus membranaceus var.mongholicus(AMM),a member of the Leguminosae,is one of the most important medicinal plants worldwide.The dried roots of AMM have a wide range of pharmacological effects and are a traditional Chinese medicine.Here,we report the first chromosome-level reference genome of AMM,comprising nine pseudochromosomes with a total size of 1.47 Gb and 27868 protein-encoding genes.Comparative genomic analysis reveals that AMM has not experienced an independent wholegenome duplication(WGD)event after the WGD event shared by the Papilionoideae species.Analysis of long terminal repeat retrotransposons suggests a recent burst of these elements at approximately 0.13 million years ago,which may explain the large size of the AMM genome.Multiple gene families involved in the biosynthesis of triterpenoids and flavonoids were expanded,and our data indicate that tandemduplication has been the main driver for expansion of these families.Among the expanded families,the phenylalanine ammonia-lyase gene family was primarily expressed in the roots of AMM,suggesting their roles in the biosynthesis of phenylpropanoid compounds.The functional versatility of 2,3-oxidosqualene cyclase genes in cluster Ⅲ may play a critical role in the diversification of triterpenoids in AMM.Our findings provide novel insights into triterpenoid and flavonoid biosynthesis and can facilitate future research on the genetics and medical applications of AMM.展开更多
Astragalus mongholicus (AM) derived from the dry root ofAstragalus membranaceus Bge. var. mongolicus (Bge.) Hsiao is a widely used traditional Chinese medicine. The present study investigated the potential role of...Astragalus mongholicus (AM) derived from the dry root ofAstragalus membranaceus Bge. var. mongolicus (Bge.) Hsiao is a widely used traditional Chinese medicine. The present study investigated the potential role of AM on renal fibrosis on a rat model of unilateral ureteral obstruction (UUO). We divided 48 Sprague-Dawley rats randomly into 4 groups: sham-operated group (Sham), untreated UUO group, AM-treated (10 g/(kg.d)) UUO group, and losartan-treated (20 mg/(kg.d)) UUO group as positive control. Haematoxylin & eosin (HE) and Masson staining were used to study the dynamic histological changes of the kidneys 7 and 14 d after operation. The expressions of fibronectin (FN), type I collagen (coil), hepatocyte growth factor (HGF), transforming growth factor-β1 (TGF-β1), and eL-smooth muscle actin (α-SMA) were analyzed by real-time polymerase chain reaction (PCR), immunohistochemistry staining, and Western blot. Results show that, similar to losartan, AM alleviated the renal damage and decreased the deposition of FN and coil from UUO by reducing the expressions of TGF-β1 and α-SMA (P〈0.05), whereas HGF increased greatly with AM treatment (P〈0.05). Our findings reveal that AM could retard the progression of renal fibrosis. The renoprotective effect of AM might be related to inhibition ofmyofibroblast activation, inducing of HGF and reducing of TGF-β1 expression.展开更多
To investigate the mechanism of lipid lowering effect of the Astragalus mongholicus and Angelica sinensis compound (A&A) on nephrotic hyperlipidemia in rats Methods Rats with nephrotic syndrome from acc...To investigate the mechanism of lipid lowering effect of the Astragalus mongholicus and Angelica sinensis compound (A&A) on nephrotic hyperlipidemia in rats Methods Rats with nephrotic syndrome from accelerated nephrotoxic serum nephritis were used They were divided into two groups: A&A treatment group and nephrotic control group Normal rats were used as a normal control group Serum lipids, serum lipoprotein lipase (LPL) and lecithin cholesterol acyltransferase (LCAT) were assayed biochemically and enzymatically mRNAs of hepatic hydroxy methyl glutaryl CoA reductase (HMG CoA R) and low density lipoprotein receptor (LDL R) were assessed by Northern blot Results In nephrotic control group hyperlipidemia was found The activities of serum LPL and LCAT were low Hepatic HMG CoA R mRNA increased temporarily at the early stage while LDL R mRNA decreased gradually In A&A treatment group, serum total cholesterol (TC), triglyceride (TG), low density lipoproteins (LDL) and very low density lipoproteins (VLDL) were significantly lower than those in nephrotic control group There was no change in the amount of hepatic HMG CoA R mRNA, but hepatic LDL R mRNA and activities of serum LPL and LCAT increased significantly Conclusions A&A alleviates hyperlipidemia consider^ably in nephrotic rats A&A improves disorders of lipid metabolism perhaps through up regulating the expression of hepatic LDL R gene and through increasing the activities of serum LPL and LCAT展开更多
[Objective] The research aimed to study the tissue culture technology and callus induction by radiation mutation of A. membranaceus Bge. [ Method ] With the different parts of Astragalus membranaceus Bge. var. monghol...[Objective] The research aimed to study the tissue culture technology and callus induction by radiation mutation of A. membranaceus Bge. [ Method ] With the different parts of Astragalus membranaceus Bge. var. mongholicus ( Bge. ) Hsiao aseptic seedling as explants ( leaves, cotyledons, hypocotyls) induced callus, and cotyledon and hypocotyls taken by the method of radiation mutation were studied. [ Result]The results showed that the three explants had relatively high callus induced rate in the medium which respectively made up of MS +6-BA 2.0 mg/L + NAA2.0 mg/L, LS +6-BA2.0 mg/L +NAA0.1 mg/L, MS + 6-BA2.0 rng/L + NAA2.0 rag/L; the optimum mutation time of hypocotyls and cotyledons was 15 minutes; the growth of the callus induced from hypocotyls would be better as the mutation time increased, but when it reached a certain time the growth would be weaken, the induction rate also would be reduced. [ Conclusion] This study will provide the scientific reference in tissue culture and mutation breeding of A. membranaceus Bge.展开更多
As a traditional Chinese medicine,the root of Astragalus membranaceus var.mongholicus(AMM) or A.membranaceus(AM) has been widely used in China and other Asian countries for thousands of years.Till now,the flavonoids,p...As a traditional Chinese medicine,the root of Astragalus membranaceus var.mongholicus(AMM) or A.membranaceus(AM) has been widely used in China and other Asian countries for thousands of years.Till now,the flavonoids,phenolic acids and saponins are considered as the main active components contributing to their therapeutic effect in these plants.In order to clarify the distribution and contents of these compounds in different organs of these plants,a rapid and sensitive analytical method for simultaneous determination of 25 active compounds including seven types(i.e.dihydroflavones,isoflavane,isoflavones,flavones.pterocarpans,phenolic acid and saponins) within 10 min was established using ultra-pressure liquid chromatography coupled with tandem mass spectrometry(UPLC-MS/MS).Then,the established method was fully validated and successfully applied to the determination of the contents of these analytes in different parts(root,rhizome,stem,leaf and flower) of AMM and AM.The results indicated that the contents of the same type of compounds in two different species plants were significantly different.Moreover,the obvious differences were also found for the distribution and contents of different type of compounds in five organs of the same species.The present study could provide necessary information for the rational development and utilization of AMM and AM resource.展开更多
Two new saponins named mongholicoside A (1) and mongholicoside B (2) were isolated from the aerial part of Astragalus membranaceus var mongholicus. Their structures were determined by 1D and 2D NMR, ESI-MS techniq...Two new saponins named mongholicoside A (1) and mongholicoside B (2) were isolated from the aerial part of Astragalus membranaceus var mongholicus. Their structures were determined by 1D and 2D NMR, ESI-MS techniques and chemical methods.展开更多
Two major isoflavone glycosides [calycosin 7-O-β-D-glucopyranoside (1) and ononin (2)] and their aglycones [calycosin (3) and formononetin (4)] were simultaneously quantified with HPLC/DAD method. Two unknown...Two major isoflavone glycosides [calycosin 7-O-β-D-glucopyranoside (1) and ononin (2)] and their aglycones [calycosin (3) and formononetin (4)] were simultaneously quantified with HPLC/DAD method. Two unknown compounds were identified as calycosin 7-O-β-D-glucopyranoside-6'"-O-malonate (U1) and formononetin 7-O-β-D-glucopymnoside-6'"-O-malonate (U2), respectively, with LC/MS^n. Raw Radix astragli were shown to have higher contents of isoflavone glycosides (1, 2), but lower contents of aglycones (3, 4) than the processed herbal materials. After being moistened with water and stored up for 24 h at 35 ℃, the glycosides and their m_alonates were almost completely transformed to their corresponding aglycones. The different contents of the isoflavone glycosides and their aglycones in raw and processed Radix astragali materials might be due to enzymolysis of the glycosides during processing.展开更多
Saline-alkali stress is a major abiotic stress affecting the quality and yield of crops.Astragalus membranaceus(Fisch)Bge.var.mongholicus(Bge.)Hsiao(Astragalus mongholicus(A.mongholicus))is a well-known medicine food ...Saline-alkali stress is a major abiotic stress affecting the quality and yield of crops.Astragalus membranaceus(Fisch)Bge.var.mongholicus(Bge.)Hsiao(Astragalus mongholicus(A.mongholicus))is a well-known medicine food homology species with various pharmacological effects and health benefits that can grow well in saline-alkali soil.However,the molecular mechanisms underlying the adaptation of A.mongholicus plants to saline-alkali stress have not yet been clarified.Here,A.mongholicus plants were exposed to long-term saline-alkali stress(200 mmol·L^(-1) mixed saline-alkali solution),which limited the growth of A.mongholicus.The roots of A.mongholicus could resist long-term saline-alkali stress by increasing the activity of antioxidant enzymes and the content of osmolytes.Transcriptome analysis(via the llumina platform)and metabolome analysis(via the Nexera UPLC Series QE Liquid Mass Coupling System)revealed that saline-alkali stress altered the activity of various metabolic pathways(e.g.amino acid metabolism,carbohydrate metabolism,lipid metabolism,and biosynthesis of other secondary metabolites).A total of 3690 differentially expressed genes(DEGs)and 997 differentially accumulated metabolites(DAMs)were identified in A..mongholicus roots under saline-alkali stress,and flavonoid-related DEGs and DAMs were significantly upregulated.Pearson correlation analysis revealed significant correlations between DEGs and DAMs related to flavonoid metabolism.MYB transcription factors might also contribute to the regulation of flavonoid biosynthesis.Overall,the results indicate that A.mongholicus plants adapt to saline-alkali stress by upregulating the biosynthesis of flavonoids,which enhances the medicinal value of A.mongholicus.展开更多
Astragali Radix(AR),known as Huangqi in China,is one of the most popular herbal medicines learnt worldwide to reinforce Qi(the vital energy).AR is traditionally prepared from the dried roots of Astragalus membranaceus...Astragali Radix(AR),known as Huangqi in China,is one of the most popular herbal medicines learnt worldwide to reinforce Qi(the vital energy).AR is traditionally prepared from the dried roots of Astragalus membranaceus or A.membranaceus var.mongholicus.It has been reported to have cardiotonic,hepatoprotective,hypotensive,immunostimulant,anti-aging,anti-oxidative,antidiabetic,and anti-inflammatory activities.The bioactive compounds were found to be flavonoids,saponins,polysaccharides,amino acids,and some trace elements.The present paper reviews the studies on AR including history,phytochemistry studies,pharmacological functions,and clinical application in recent years.展开更多
基金National Natural Science Foundation of China(81903934) Tianjin Health Science and Technology Project(ZC20205).
文摘Objective:To investigate the mechanism by which Astragalus mongholicus Bunge(AM),and Angelica sinensis Diels(AS)act in interstitial lung disease(ILD)based on computational prediction.Methods:We screened the ingredients of AM and AS in PubMed,the Web of Science,China National Knowledge Infrastructure(CNKI)Databases,etc.Then obtained the potential effective components.By sharing the same molecular with ILD,we got the possible target genes for ILD treatment and constructed components–targets–disease network with Cytoscape software.The CTD(Comparative Toxicogenomics Database)database was used for GO and KEGG enrichment analysis of these target genes.Results:59 active ingredients that can be druggable were chosen from AM,67 active ingredients were chosen from AS.77 overlapping target genes for AM and ILD and 36 overlapping target genes for AS and ILD were acquired.The hub targets of AM were PTGS2,PTGS1,CDK2,MAOA,ESR1,TOP2A,GSK3B,ESR2,PPARG,NOS2,The hub targets of AS were PTGS2,GABRA1,PTGS1,CHRM1,SLC6A2,ADRA1B,ADRAIA,ADRB2,CHRM3,GABRA2,CHRM2.Quercetin,kaempferol,daidzein,pavilion,7-Hydroxycoumarin,and 5-Hydroxycoumarin were the main active ingredients which have more effective targets.Prediction of the protein-protein interaction network showed PTGS2,GSK3B,PPARG,etc.,were the important predicted targets.The enriched KEGG pathways,including the Immune System,Metabolism of lipids and lipoproteins,Cytokine Signaling in the Immune system,Generic Transcription Pathway,The interleukin pathway,Metabolism of proteins,PI3K-Akt signaling pathway,Metabolic pathways,Innate Immune System,Neuroactive ligand-receptor interaction,Metabolism,GPCR downstream signaling,Amine ligand-binding receptors,Class A/1,Calcium signaling pathway.Molecular docking showed that quercetin,kaempferol,daidzein,pavilion,7-Hydroxycoumarin,5-Hydroxycoumarin had good binding activities with PTGS2 and GSK3B,which mainly mediated PI3K/Akt and other important signaling pathways in the pathogenesis of ILD.Conclusion:The components in AS and AM share some common targets,such as PTGS2.AM and AS may ameliorate ILD through the PI3K-Akt signaling pathway which is mediated by GSK3B.PTGS2,PPARG may also be vital target genes in the treatment of ILD with AM and AS.
基金Funded by National Natural Science Foundation of China(81903934)Tianjin Health Science and Technology Project(ZC20205).
文摘Objective:To investigate the mechanism by which Astragalus mongholicus Bunge(AM),and Angelica sinensis Diels(AS)act in interstitial lung disease(ILD)based on computational prediction.Methods:We screened the ingredients of AM and AS in PubMed,the Web of Science,China National Knowledge Infrastructure(CNKI)Databases,etc.Then obtained the potential effective components.By sharing the same molecular with ILD,we got the possible target genes for ILD treatment and constructed components–targets–disease network with Cytoscape software.The CTD(Comparative Toxicogenomics Database)database was used for GO and KEGG enrichment analysis of these target genes.Results:59 active ingredients that can be druggable were chosen from AM,67 active ingredients were chosen from AS.77 overlapping target genes for AM and ILD and 36 overlapping target genes for AS and ILD were acquired.The hub targets of AM were PTGS2,PTGS1,CDK2,MAOA,ESR1,TOP2A,GSK3B,ESR2,PPARG,NOS2,The hub targets of AS were PTGS2,GABRA1,PTGS1,CHRM1,SLC6A2,ADRA1B,ADRAIA,ADRB2,CHRM3,GABRA2,CHRM2.Quercetin,kaempferol,daidzein,pavilion,7-Hydroxycoumarin,and 5-Hydroxycoumarin were the main active ingredients which have more effective targets.Prediction of the protein-protein interaction network showed PTGS2,GSK3B,PPARG,etc.,were the important predicted targets.The enriched KEGG pathways,including the Immune System,Metabolism of lipids and lipoproteins,Cytokine Signaling in the Immune system,Generic Transcription Pathway,The interleukin pathway,Metabolism of proteins,PI3K-Akt signaling pathway,Metabolic pathways,Innate Immune System,Neuroactive ligand-receptor interaction,Metabolism,GPCR downstream signaling,Amine ligand-binding receptors,Class A/1,Calcium signaling pathway.Molecular docking showed that quercetin,kaempferol,daidzein,pavilion,7-Hydroxycoumarin,5-Hydroxycoumarin had good binding activities with PTGS2 and GSK3B,which mainly mediated PI3K/Akt and other important signaling pathways in the pathogenesis of ILD.Conclusion:The components in AS and AM share some common targets,such as PTGS2.AM and AS may ameliorate ILD through the PI3K-Akt signaling pathway which is mediated by GSK3B.PTGS2,PPARG may also be vital target genes in the treatment of ILD with AM and AS.
文摘To evaluate the antioxidant activities of different chemical constituents from Astragalus mongholicus Bunge and their protection against xanthine (XA)/xanthine oxidase (XO)-induced toxicity in PC12 cells. Methods The compounds of Astragalus mongholicus Bunge were isolated by chromatography and the structures were elucidated on the basis of spectral data interpretation. Their antioxidant activities were detected by 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activities in a cell-free system. Meanwhile, the effects against XA/XO-induced toxicity were assessed using MTT assay in PC12 cells. Results Ten principal constituents were isolated and identified as formononetin (Ⅰ), ononin (Ⅱ), calycosin (Ⅲ), calycosin-7-O-β-D-glucoside (Ⅳ), 9,10-dimethoxypterocarpan-3-O-β-D-glucoside (Ⅴ), adenosine (Ⅵ), pinitol (Ⅶ), daucosterol (Ⅷ), β-sitoster (Ⅸ) and saccharose (Ⅹ) from Astragalus mongholicus Bunge. The compounds Ⅰ, Ⅲ, and Ⅳ scavenged DPPH free radicals in vitro. Formononetin and calycosin were found to inhibit XA/XO-induced cell injury significantly, with an estimated EC50 of 50 ng/mL. Conclusion Compound Ⅲ, Ⅵ, and Ⅶ are first reported in this plant. Calycosin exhibits the most potent antioxidant activity both in the cell-free system and in the cell system.
基金supported by the Natural Science Foundation of China(No.NSFC.30670415).
文摘Objective To further investigate the neuroprotective effects of five isoflavonoids from Astragalus mongholicus on xanthine (XA)/xanthine oxidase (XO)-induced injury to PC12 cells. Methods PC12 cells were damaged by XA/XO. The activities of antioxidant enzymes, MTT, LDH, and GSH assays were used to evaluate the protection of these five isofavonoids. Contents of Bcl-2 family proteins were determined with flow cytometry. Results Among the five isoflavonoids including formononetin, ononin, 9, 10-dimethoxypterocarpan-3-O-β-D-glucoside, calycosin and calycosin-7-O-glucoside, calycosin and calycosin-7-O-glucoside were found to inhibit XA/XO-induced injury to PC12 cells. Their ECs0values of formononetin and calycosin were 0.05 μg/mL. Moreover, treatment with these three isoflavonoids prevented a decrease in the activities of antioxidant enzymes, superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), while formononetin and calycosin could prevent a significant deletion of GSH. In addition, only calycosin and calycosin-7-O-glucoside were shown to inhibit XO activity in cell-free system, with an approximate IC50 value of 10 μg/mL and 50 μg/mL. Formononetin and calycosin had no significant infuence on Bcl-2 or Bax protein contents. Conclusion Neuroprotection of formononetin, calycosin and calycosin-7-O-glucoside may be mediated by increasing endogenous antioxidants, rather by inhibiting XO activities or by scavenging free radicals.
基金grants from Scientific Planning Program of Guangdong Province, No. 2004B36001009Scientific Research Funds of Guangdong Bureau of Traditional Chinese Medicine, No. 30002+1 种基金 Scientific Development Special Planning Funds of Foshan City, No. 200124Medical Scientific Research Program of Foshan City, No. 2000096
文摘BACKGROUND: The pharmacological action of traditional Chinese medicine compound is the comprehensive effect of the various ingredients, and the interactions of various ingredients are closely correlated with the final effect. In order to reveal the compatibility mechanism of BHD's prescription in treating and preventing ischemic cerebrovascular disease, we needed explore the effect and relation of ingredients in the prescription. OBJECTIVE: To observe the effect of Buyang Huanwu decoction (BHD) and Astragalus mongholicus on the activity of platelet activating factor receptor (PAFR) in the platelet of rabbits in vitro, and investigate the mechanism of Astragalus mongholicus. DESIGN: A decomposed recipes study. SETTING: Guangzhou University of Traditional Chinese Medicine. MATERIALS: Five New Zealand rabbits, weighing 2-3 kg, both sexes, were used. BHD was composed of Sheng Huang Qi 120 g, Dang Gui Wei 6 g, Chi Shao 4.5 g, Chuan Xiong 3 g, Di Long 3 g, Tao Ren 3 g, Hong Hua 3 g. The prescription for activating blood circulation consisted of Dang Gui Wei 6 g, Chi Shao 4.5 g, Chuan Xiong 3 g, Di Long 3 g, Tao Ren 3 g and Hong Hua 3 g. The prescription for invigorating qi consisted of 120 g Sheng Huang Qi. The prepared herbal pieces were purchased from the traditional Chinese medicine Dispensary of Foshan Second People's Hospital, and appraised by Professor Xu from Science of Chinese Materia Medica College, Guangzhou University of Traditional Chinese Medicine. 3H-PAF was supplied by Amersham Co., Ltd. (specific activity: 6. 475 TBq/mmol; batch number: 200402); PAF standard by Biomol Co., Ltd. (batch number: P1318V). METHODS: The experiments were carried out in the Laboratory of Nuclear Medicine, Guangzhou University of Traditional Chinese Medicine from September to December 2004. ① Injections of BHD, prescriptions for activating blood circulation and invigorating qi were prepared by the decoction and alcohol sedimentation technique. Rabbit common carotid artery blood (40 mL) was drawn via intubation to prepare platelet suspension of (0.8-1.0)×1010 L-1. ② Determination of 3H-PAF and washed PAFR binding: The general combination tube (T) contained washed platelet-rich plasma (WPRP) 380 μL + 3H-PAF (0.35 nmol/L)10 μL+distilled water 5 μL; The nonspecific binding tube (P) contained WPRP 380 μL+3H-PAF(0.35 nmol/L)10 μL+cold PAF (1 μmol/L) 5 μL; The sample tube (Y) contained WPRP 380 μL+3H-PAF(0.35 nmol/L)10 μL+experimental medicine (injection of BHD, prescriptions for activating blood circulation or invigorating qi) 5 μL. The test was conducted for three times for each sample in the same way as mentioned above. The samples were shaken on the oscillator for 30 s, then bathed at 25 ℃ for 40 minutes, and the reaction was terminated with cold Tris buffer containing 0.1% BSA, multichannel cell detachment separator was used for vacuum suction to filter the separated free 3H-PAF, and the filter paper was washed with cold Tris buffer for four times, then dried in the baking oven (80 ℃) for 1 hour, and placed in xylol liquid scintillator, and the radioactivity was determined automatically by the liquid scintillation detector. The mean of the three parallel tubes was calculated. The specific binging inhibition rate was calculated: SBIR=[(T-Y)/(T-P)]×100%]. ③ Univariate analysis of variance was conducted. And for comparison of each paired groups, the q test was adopted. MAIN OUTCOME MEASURES: Effect of BHD whole prescription, prescriptions for activating blood circulation and invigorating qi on the specific binding inhibition rate of 3H-PAF and PAFR. RESULTS: BHD, prescriptions for activating blood circulation and invigorating qi were all able to inhibit the specific binding of 3H-PAF to PAFR, the specific blinding inhibition rates were (45.90±7.50)%, (97.90±1.84)% and (26.75±2.48)%, respectively, and there were significant differences between every two groups (P < 0.01). CONCLUSION: Single Astragalus mongholicus (120 g) can inhibit the specific blinding of PAFR in the platelet of the rabbit with 3H-PAF, but the combination of Astragalus mongholicus with the drugs for activating blood circulation in BHD can significantly decrease the inhibiting action of the latter on PAFR activity of the platelet, reflecting the combined mechanism of 'removing blood stasis without injuring the vital qi' in BHD.
基金supported by grants from the City-University Cooperation Project of China(201904710111639).
文摘Astragalus membranaceus var.mongholicus(AMM),a member of the Leguminosae,is one of the most important medicinal plants worldwide.The dried roots of AMM have a wide range of pharmacological effects and are a traditional Chinese medicine.Here,we report the first chromosome-level reference genome of AMM,comprising nine pseudochromosomes with a total size of 1.47 Gb and 27868 protein-encoding genes.Comparative genomic analysis reveals that AMM has not experienced an independent wholegenome duplication(WGD)event after the WGD event shared by the Papilionoideae species.Analysis of long terminal repeat retrotransposons suggests a recent burst of these elements at approximately 0.13 million years ago,which may explain the large size of the AMM genome.Multiple gene families involved in the biosynthesis of triterpenoids and flavonoids were expanded,and our data indicate that tandemduplication has been the main driver for expansion of these families.Among the expanded families,the phenylalanine ammonia-lyase gene family was primarily expressed in the roots of AMM,suggesting their roles in the biosynthesis of phenylpropanoid compounds.The functional versatility of 2,3-oxidosqualene cyclase genes in cluster Ⅲ may play a critical role in the diversification of triterpenoids in AMM.Our findings provide novel insights into triterpenoid and flavonoid biosynthesis and can facilitate future research on the genetics and medical applications of AMM.
基金(No.30170437) supported by the National Natural Science Foundation of China
文摘Astragalus mongholicus (AM) derived from the dry root ofAstragalus membranaceus Bge. var. mongolicus (Bge.) Hsiao is a widely used traditional Chinese medicine. The present study investigated the potential role of AM on renal fibrosis on a rat model of unilateral ureteral obstruction (UUO). We divided 48 Sprague-Dawley rats randomly into 4 groups: sham-operated group (Sham), untreated UUO group, AM-treated (10 g/(kg.d)) UUO group, and losartan-treated (20 mg/(kg.d)) UUO group as positive control. Haematoxylin & eosin (HE) and Masson staining were used to study the dynamic histological changes of the kidneys 7 and 14 d after operation. The expressions of fibronectin (FN), type I collagen (coil), hepatocyte growth factor (HGF), transforming growth factor-β1 (TGF-β1), and eL-smooth muscle actin (α-SMA) were analyzed by real-time polymerase chain reaction (PCR), immunohistochemistry staining, and Western blot. Results show that, similar to losartan, AM alleviated the renal damage and decreased the deposition of FN and coil from UUO by reducing the expressions of TGF-β1 and α-SMA (P〈0.05), whereas HGF increased greatly with AM treatment (P〈0.05). Our findings reveal that AM could retard the progression of renal fibrosis. The renoprotective effect of AM might be related to inhibition ofmyofibroblast activation, inducing of HGF and reducing of TGF-β1 expression.
基金This study was supported by the National Natural Science Foundation of China(No.39670909)and China Medical Board in NewYork
文摘To investigate the mechanism of lipid lowering effect of the Astragalus mongholicus and Angelica sinensis compound (A&A) on nephrotic hyperlipidemia in rats Methods Rats with nephrotic syndrome from accelerated nephrotoxic serum nephritis were used They were divided into two groups: A&A treatment group and nephrotic control group Normal rats were used as a normal control group Serum lipids, serum lipoprotein lipase (LPL) and lecithin cholesterol acyltransferase (LCAT) were assayed biochemically and enzymatically mRNAs of hepatic hydroxy methyl glutaryl CoA reductase (HMG CoA R) and low density lipoprotein receptor (LDL R) were assessed by Northern blot Results In nephrotic control group hyperlipidemia was found The activities of serum LPL and LCAT were low Hepatic HMG CoA R mRNA increased temporarily at the early stage while LDL R mRNA decreased gradually In A&A treatment group, serum total cholesterol (TC), triglyceride (TG), low density lipoproteins (LDL) and very low density lipoproteins (VLDL) were significantly lower than those in nephrotic control group There was no change in the amount of hepatic HMG CoA R mRNA, but hepatic LDL R mRNA and activities of serum LPL and LCAT increased significantly Conclusions A&A alleviates hyperlipidemia consider^ably in nephrotic rats A&A improves disorders of lipid metabolism perhaps through up regulating the expression of hepatic LDL R gene and through increasing the activities of serum LPL and LCAT
文摘[Objective] The research aimed to study the tissue culture technology and callus induction by radiation mutation of A. membranaceus Bge. [ Method ] With the different parts of Astragalus membranaceus Bge. var. mongholicus ( Bge. ) Hsiao aseptic seedling as explants ( leaves, cotyledons, hypocotyls) induced callus, and cotyledon and hypocotyls taken by the method of radiation mutation were studied. [ Result]The results showed that the three explants had relatively high callus induced rate in the medium which respectively made up of MS +6-BA 2.0 mg/L + NAA2.0 mg/L, LS +6-BA2.0 mg/L +NAA0.1 mg/L, MS + 6-BA2.0 rng/L + NAA2.0 rag/L; the optimum mutation time of hypocotyls and cotyledons was 15 minutes; the growth of the callus induced from hypocotyls would be better as the mutation time increased, but when it reached a certain time the growth would be weaken, the induction rate also would be reduced. [ Conclusion] This study will provide the scientific reference in tissue culture and mutation breeding of A. membranaceus Bge.
基金supported by the National Natural Science Foundation of China(No.81473538,81873189)the Key R&D Program of Ningxia Hui Autonomous Region,China(2017BY079,2018ZWYQ0077)China Agricultural Research System(CARS-21)
文摘As a traditional Chinese medicine,the root of Astragalus membranaceus var.mongholicus(AMM) or A.membranaceus(AM) has been widely used in China and other Asian countries for thousands of years.Till now,the flavonoids,phenolic acids and saponins are considered as the main active components contributing to their therapeutic effect in these plants.In order to clarify the distribution and contents of these compounds in different organs of these plants,a rapid and sensitive analytical method for simultaneous determination of 25 active compounds including seven types(i.e.dihydroflavones,isoflavane,isoflavones,flavones.pterocarpans,phenolic acid and saponins) within 10 min was established using ultra-pressure liquid chromatography coupled with tandem mass spectrometry(UPLC-MS/MS).Then,the established method was fully validated and successfully applied to the determination of the contents of these analytes in different parts(root,rhizome,stem,leaf and flower) of AMM and AM.The results indicated that the contents of the same type of compounds in two different species plants were significantly different.Moreover,the obvious differences were also found for the distribution and contents of different type of compounds in five organs of the same species.The present study could provide necessary information for the rational development and utilization of AMM and AM resource.
基金This research was financially supported by the key program of National Natural Science Foundation of China (No. 30530870).
文摘Two new saponins named mongholicoside A (1) and mongholicoside B (2) were isolated from the aerial part of Astragalus membranaceus var mongholicus. Their structures were determined by 1D and 2D NMR, ESI-MS techniques and chemical methods.
基金National Natural Science Foundation of China(Grant No.20432030 and 20742005).
文摘Two major isoflavone glycosides [calycosin 7-O-β-D-glucopyranoside (1) and ononin (2)] and their aglycones [calycosin (3) and formononetin (4)] were simultaneously quantified with HPLC/DAD method. Two unknown compounds were identified as calycosin 7-O-β-D-glucopyranoside-6'"-O-malonate (U1) and formononetin 7-O-β-D-glucopymnoside-6'"-O-malonate (U2), respectively, with LC/MS^n. Raw Radix astragli were shown to have higher contents of isoflavone glycosides (1, 2), but lower contents of aglycones (3, 4) than the processed herbal materials. After being moistened with water and stored up for 24 h at 35 ℃, the glycosides and their m_alonates were almost completely transformed to their corresponding aglycones. The different contents of the isoflavone glycosides and their aglycones in raw and processed Radix astragali materials might be due to enzymolysis of the glycosides during processing.
基金the China Agriculture Research System of MOF and MARA(CARS-21)Hohhot City Application Technology Project DaoDi Mongolian and Chinese Herbs Seed Optimal Breeding and Standardized Planting Technology Research(2020-She-4)Major Special Project in Inner Mongolia:‘Big Data Platform of Plant Germplasm in Northwest Region of Yellow River Basin and Seed Gene Identification,Breeding and Seedling Cultivation of Imitation Wild Mongolian and Chinese Herbs'.
文摘Saline-alkali stress is a major abiotic stress affecting the quality and yield of crops.Astragalus membranaceus(Fisch)Bge.var.mongholicus(Bge.)Hsiao(Astragalus mongholicus(A.mongholicus))is a well-known medicine food homology species with various pharmacological effects and health benefits that can grow well in saline-alkali soil.However,the molecular mechanisms underlying the adaptation of A.mongholicus plants to saline-alkali stress have not yet been clarified.Here,A.mongholicus plants were exposed to long-term saline-alkali stress(200 mmol·L^(-1) mixed saline-alkali solution),which limited the growth of A.mongholicus.The roots of A.mongholicus could resist long-term saline-alkali stress by increasing the activity of antioxidant enzymes and the content of osmolytes.Transcriptome analysis(via the llumina platform)and metabolome analysis(via the Nexera UPLC Series QE Liquid Mass Coupling System)revealed that saline-alkali stress altered the activity of various metabolic pathways(e.g.amino acid metabolism,carbohydrate metabolism,lipid metabolism,and biosynthesis of other secondary metabolites).A total of 3690 differentially expressed genes(DEGs)and 997 differentially accumulated metabolites(DAMs)were identified in A..mongholicus roots under saline-alkali stress,and flavonoid-related DEGs and DAMs were significantly upregulated.Pearson correlation analysis revealed significant correlations between DEGs and DAMs related to flavonoid metabolism.MYB transcription factors might also contribute to the regulation of flavonoid biosynthesis.Overall,the results indicate that A.mongholicus plants adapt to saline-alkali stress by upregulating the biosynthesis of flavonoids,which enhances the medicinal value of A.mongholicus.
文摘Astragali Radix(AR),known as Huangqi in China,is one of the most popular herbal medicines learnt worldwide to reinforce Qi(the vital energy).AR is traditionally prepared from the dried roots of Astragalus membranaceus or A.membranaceus var.mongholicus.It has been reported to have cardiotonic,hepatoprotective,hypotensive,immunostimulant,anti-aging,anti-oxidative,antidiabetic,and anti-inflammatory activities.The bioactive compounds were found to be flavonoids,saponins,polysaccharides,amino acids,and some trace elements.The present paper reviews the studies on AR including history,phytochemistry studies,pharmacological functions,and clinical application in recent years.