A partially linear regression model with heteroscedastic and/or serially correlated errors is studied here. It is well known that in order to apply the semiparametric least squares estimation (SLSE) to make statisti...A partially linear regression model with heteroscedastic and/or serially correlated errors is studied here. It is well known that in order to apply the semiparametric least squares estimation (SLSE) to make statistical inference a consistent estimator of the asymptotic covariance matrix is needed. The traditional residual-based estimator of the asymptotic covariance matrix is not consistent when the errors are heteroscedastic and/or serially correlated. In this paper we propose a new estimator by truncating, which is an extension of the procedure in White. This estimator is shown to be consistent when the truncating parameter converges to infinity with some rate.展开更多
基金Zhou's research was partially supported by the National Natural Science Foundation of China(No.10471140,10571169)
文摘A partially linear regression model with heteroscedastic and/or serially correlated errors is studied here. It is well known that in order to apply the semiparametric least squares estimation (SLSE) to make statistical inference a consistent estimator of the asymptotic covariance matrix is needed. The traditional residual-based estimator of the asymptotic covariance matrix is not consistent when the errors are heteroscedastic and/or serially correlated. In this paper we propose a new estimator by truncating, which is an extension of the procedure in White. This estimator is shown to be consistent when the truncating parameter converges to infinity with some rate.