This paper focuses on the analytical and numerical asymptotical stability of neutral reaction-diffusion equations with piecewise continuous arguments.First,for the analytical solutions of the equations,we derive their...This paper focuses on the analytical and numerical asymptotical stability of neutral reaction-diffusion equations with piecewise continuous arguments.First,for the analytical solutions of the equations,we derive their expressions and asymptotical stability criteria.Second,for the semi-discrete and one-parameter fully-discrete finite element methods solving the above equations,we work out the sufficient conditions for assuring that the finite element solutions are asymptotically stable.Finally,with a typical example with numerical experiments,we illustrate the applicability of the obtained theoretical results.展开更多
New theorems of asymptotical stability and uniformly asymptotical stability for nonautonomous difference equations are given in this paper. The classical Liapunov asymptotical stability theorem of nonautonomous differ...New theorems of asymptotical stability and uniformly asymptotical stability for nonautonomous difference equations are given in this paper. The classical Liapunov asymptotical stability theorem of nonautonomous difference equations relies on the existence of a positive definite Liapunov function that has an indefinitely small upper bound and whose variation along a given nonautonomous difference equations is negative definite. In this paper, we consider the case that the Liapunov function is only positive definite and its variation is semi-negative definite. At these weaker conditions, we put forward a new asymptotical stability theorem of nonautonomous difference equations by adding to extra conditions on the variation. After that, in addition to the hypotheses of our new asymptotical stability theorem, we obtain a new uniformly asymptotical stability theorem of nonautonomous difference equations provided that the Liapunov function has an indefinitely small upper bound. Example is given to verify our results in the last.展开更多
This paper studies the stochastic asymptotical stability of stochastic impulsive differential equations, and establishes a comparison theory to ensure the trivial solution's stochastic asymptotical stability. From th...This paper studies the stochastic asymptotical stability of stochastic impulsive differential equations, and establishes a comparison theory to ensure the trivial solution's stochastic asymptotical stability. From the comparison theory, it can find out whether the stochastic impulsive differential system is stable just by studying the stability of a deterministic comparison system. As a general application of this theory, it controls the chaos of stochastic Lii system using impulsive control method, and numerical simulations are employed to verify the feasibility of this method.展开更多
It has been recently found that many models were established with the aid of fractional derivatives, such as viscoelastic systems, colored noise, electrode-electrolyte polarization, dielectric polarization, boundary l...It has been recently found that many models were established with the aid of fractional derivatives, such as viscoelastic systems, colored noise, electrode-electrolyte polarization, dielectric polarization, boundary layer effects in ducts, electromagnetic waves, quantitative finance, quantum evolution of complex systems, and fractional kinetics. In this paper, the asymptotical stability of higher-dimensional linear fractional differential systems with the Riemann-Liouville fractional order and Caputo fractional order were studied. The asymptotical stability theorems were also derived.展开更多
In the area of control theory the time-delay systems have been investigated. It's well known that delays often result in instability, therefore, stability analysis of time-delay systems is an important subject in ...In the area of control theory the time-delay systems have been investigated. It's well known that delays often result in instability, therefore, stability analysis of time-delay systems is an important subject in control theory. As a result, many criteria for testing the stability of linear time-delay systems have been proposed. Significant progress has been made in the theory of impulsive systems and impulsive delay systems in recent years. However, the corresponding theory for uncertain impulsive systems and uncertain impulsive delay systems has not been fully developed. In this paper, robust stability criteria are established for uncertain linear delay impulsive systems by using Lyapunov function, Razumikhin techniques and the results obtained. Some examples are given to illustrate our theory.展开更多
In this paper we prove a global attractivity result for the unique positive equilibrium point of a difference equation,which improves and generalizes some known ones in the existing literature.Especially,our results c...In this paper we prove a global attractivity result for the unique positive equilibrium point of a difference equation,which improves and generalizes some known ones in the existing literature.Especially,our results completely solve an open problem and some conjectures proposed in[1,2,3,4].展开更多
Dynamical behaviors of a class of second order Hopfield neural networks with time delays is investigated.The existence of a unique equilibrium point is proved by using Brouwer's fixed point theorem and the counter...Dynamical behaviors of a class of second order Hopfield neural networks with time delays is investigated.The existence of a unique equilibrium point is proved by using Brouwer's fixed point theorem and the counter proof method,and some sufficient conditions for the global asymptotic stability of the equilibrium point are obtained through the combination of a suitable Lyapunov function and an algebraic inequality technique.展开更多
In this paper, we treat the spread of COVID-19 using a delayed stochastic SVIRS (Susceptible, Infected, Recovered, Susceptible) epidemic model with a general incidence rate and differential susceptibility. We start wi...In this paper, we treat the spread of COVID-19 using a delayed stochastic SVIRS (Susceptible, Infected, Recovered, Susceptible) epidemic model with a general incidence rate and differential susceptibility. We start with a deterministic model, then add random perturbations on the contact rate using white noise to obtain a stochastic model. We first show that the delayed stochastic differential equation that describes the model has a unique global positive solution for any positive initial value. Under the condition R<sub>0</sub> ≤ 1, we prove the almost sure asymptotic stability of the disease-free equilibrium of the model.展开更多
We theoretically investigate the asymptotical stability, local bifurcations and chaos of discrete-time recurrent neural networks with the form of $$u_i \left( {t + 1} \right) = ku_i \left( t \right) + \Delta t\left( {...We theoretically investigate the asymptotical stability, local bifurcations and chaos of discrete-time recurrent neural networks with the form of $$u_i \left( {t + 1} \right) = ku_i \left( t \right) + \Delta t\left( {\sum\limits_{j = 1}^n {a_{ij} v_j \left( t \right) + a_i } } \right), i = 1,2, \cdots ,n,$$ , where the input-output function is defined as a generalized sigmoid function, such asv i =2/π arctan(π/2μiμi), $v_i = \frac{2}{\pi }arctan\left( {\frac{\pi }{2}\mu _i u_i } \right)$ and $v_i = \frac{1}{{1 + e^{ - u_i /\varepsilon } }},$ , etc. Numerical simulations are also provided to demonstrate the theoretical results.展开更多
By constructing a suitable Lyapunov function,sufficient conditions which ensure the global asymptotical stability of the positive equilibrium and boundary equilibrium of an obligate Lotka-Volterra mutualism model are ...By constructing a suitable Lyapunov function,sufficient conditions which ensure the global asymptotical stability of the positive equilibrium and boundary equilibrium of an obligate Lotka-Volterra mutualism model are obtained,respectively.It is shown that the conditions which ensure the local stability of the nonnegative equilibria is enough to ensure their global asymptotical stability.Our result supplements and complements some known result.展开更多
In this paper, we first introduce the model of discrete-time neural networkswith generalized input--output function and present a proof of the existence of afixed point by Schauder fixed-point principle. Secondly, we ...In this paper, we first introduce the model of discrete-time neural networkswith generalized input--output function and present a proof of the existence of afixed point by Schauder fixed-point principle. Secondly, we study the uniformlyasymptotical stability of equilibrium in non-autonomous discrete--time neuralnetworks and give some sufficient conditions that guarantee the stability of itby using the converse theorem of Lyapunov function. Finally, several examplesand numerical simulations are given to illustrate and reinforce our theories.展开更多
In this paper,the asymptotical mean-square stability analysis problem is considered for a class of cellular neural networks (CNNs) with random delay. Compared with the previous work,the delay is modeled by a continuou...In this paper,the asymptotical mean-square stability analysis problem is considered for a class of cellular neural networks (CNNs) with random delay. Compared with the previous work,the delay is modeled by a continuous-time homogeneous Markov process with a finite number of states. The main purpose of this paper is to establish easily verifiable conditions under which the random delayed cellular neural network is asymptotic mean-square stability. By using some stochastic analysis techniques and Lyapunov-Krasovskii functional,some conditions are derived to ensure that the cellular neural networks with random delay is asymptotical mean-square stability. A numerical example is exploited to show the vadlidness of the established results.展开更多
The asymptotic stability of two species stochastic Lotka-Volterra model is explored in this paper. Firstly, the Lotka-Volterra model with random parameter is built and reduced into the equivalent deterministic system ...The asymptotic stability of two species stochastic Lotka-Volterra model is explored in this paper. Firstly, the Lotka-Volterra model with random parameter is built and reduced into the equivalent deterministic system by orthogonal polynomial approximation. Then, the linear stability theory and Routh-Hurwitz criterion for nonlinear deterministic systems are applied to the equivalent one. At last, at the aid of Lyapunov second method, we obtain that as the random intensity or statistical parameter of random variable is changed, the stability about stochastic Lotka-Volterra model is different from the deterministic system.展开更多
The sex ratio of crocodiles is strongly biased towards females, often as high as 10 females to 1 male. In crocodilians, the temperature of egg incubation is the environmental factor determining sex. If the temperature...The sex ratio of crocodiles is strongly biased towards females, often as high as 10 females to 1 male. In crocodilians, the temperature of egg incubation is the environmental factor determining sex. If the temperature is low, around 30˚C, the hatchlings are all females. Higher temperature, around 34˚C, hatch all males. This study was made to consider the asymptotic stability of a positive equilibrium point in a nonlinear discrete model of the basic nesting population model, which is described in three-region depending on the temperature of egg incubation. This model is based on key life-historical data and Murray’s research. To study above, we have applied the classical linearization method and P. Cull’s method and moreover, we employ non-standard discretization methods for later our Equations (6)-(8) and (15).展开更多
Based on bounded network-induced time-delay, the networked control system is modeled as a linear time-variant singular system. Using the Lyapunov theory and the linear matrix inequality approach, the criteria for dela...Based on bounded network-induced time-delay, the networked control system is modeled as a linear time-variant singular system. Using the Lyapunov theory and the linear matrix inequality approach, the criteria for delay-independent stability and delay-dependent stability of singular networked control systems are derived and transformed to a feasibility problem of linear matrix inequality formulation, which can be solved by the Matlab LMI toolbox, and the feasible solutions provide the maximum allowable delay bound that makes the system stable. A numerical example is provided, which shows that the analysis method is valid and the stability criteria are feasible.展开更多
This article proposes a diffused hepatitis B virus (HBV) model with CTL immune response and nonlinear incidence for the control of viral infections. By means of different Lyapunov functions, the global asymptotical ...This article proposes a diffused hepatitis B virus (HBV) model with CTL immune response and nonlinear incidence for the control of viral infections. By means of different Lyapunov functions, the global asymptotical properties of the viral-free equilibrium and immune-free equilibrium of the model are obtained. Global stability of the positive equilibrium of the model is also considered. The results show that the free diffusion of the virus has no effect on the global stability of such HBV infection problem with Neumann homogeneous boundary conditions.展开更多
There are many works on the asymptotic stability of second dimensional nonlinear differential equation. In particular, these results only concern with the system which includes one or two terms, whereas few works conc...There are many works on the asymptotic stability of second dimensional nonlinear differential equation. In particular, these results only concern with the system which includes one or two terms, whereas few works concern with system which includes more than two terms. In this paper, system which includes four nonlinear terms are studies. We obtain the global asymptotic stability of zero solution, and discard the condition which require the Liapunov function trends to infinity, and only require that the positive orbit is bounded.展开更多
Investigating the stability of information spreading over SNS helps to understand the principles inherent in the spreading behavior.This paper explores the mechanisms of information spreading including stifling mechan...Investigating the stability of information spreading over SNS helps to understand the principles inherent in the spreading behavior.This paper explores the mechanisms of information spreading including stifling mechanism,latent mechanism and forgetting mechanism,establishes a refined SEIR model,and builds the corresponding mean-field equations.The methods of the differential dynamics and the next generation matrix are used to calculate the equilibriums and the basic reproductive number,and the asymptotical stability of the network equilibriums are proved theoretically.Simulation experiments are carried out to analyze the effect of the spreading mechanisms on the information spreading process and the results support our conclusions.展开更多
This paper is concerned with the stability analysis for static recurrent neural networks (RNNs) with time-varying delay. By Lyapunov functional method and linear matrix inequality technique, some new delay-dependent...This paper is concerned with the stability analysis for static recurrent neural networks (RNNs) with time-varying delay. By Lyapunov functional method and linear matrix inequality technique, some new delay-dependent conditions are established to ensure the asymptotic stability of the neural network. Expressed in linear matrix inequalities (LMIs), the proposed delay-dependent stability conditions can be checked using the recently developed algorithms. A numerical example is given to show that the obtained conditions can provide less conservative results than some existing ones.展开更多
The global asymptotical stability for a class of stochastic delayed neural networks (SDNNs) with Maxkovian jumping parameters is considered. By applying Lyapunov functional method and Ito's differential rule, new d...The global asymptotical stability for a class of stochastic delayed neural networks (SDNNs) with Maxkovian jumping parameters is considered. By applying Lyapunov functional method and Ito's differential rule, new delay-dependent stability conditions are derived. All results are expressed in terms of linear matrix inequality (LMI), and a numerical example is presented to illustrate the correctness and less conservativeness of the proposed method.展开更多
文摘This paper focuses on the analytical and numerical asymptotical stability of neutral reaction-diffusion equations with piecewise continuous arguments.First,for the analytical solutions of the equations,we derive their expressions and asymptotical stability criteria.Second,for the semi-discrete and one-parameter fully-discrete finite element methods solving the above equations,we work out the sufficient conditions for assuring that the finite element solutions are asymptotically stable.Finally,with a typical example with numerical experiments,we illustrate the applicability of the obtained theoretical results.
文摘New theorems of asymptotical stability and uniformly asymptotical stability for nonautonomous difference equations are given in this paper. The classical Liapunov asymptotical stability theorem of nonautonomous difference equations relies on the existence of a positive definite Liapunov function that has an indefinitely small upper bound and whose variation along a given nonautonomous difference equations is negative definite. In this paper, we consider the case that the Liapunov function is only positive definite and its variation is semi-negative definite. At these weaker conditions, we put forward a new asymptotical stability theorem of nonautonomous difference equations by adding to extra conditions on the variation. After that, in addition to the hypotheses of our new asymptotical stability theorem, we obtain a new uniformly asymptotical stability theorem of nonautonomous difference equations provided that the Liapunov function has an indefinitely small upper bound. Example is given to verify our results in the last.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10902085)
文摘This paper studies the stochastic asymptotical stability of stochastic impulsive differential equations, and establishes a comparison theory to ensure the trivial solution's stochastic asymptotical stability. From the comparison theory, it can find out whether the stochastic impulsive differential system is stable just by studying the stability of a deterministic comparison system. As a general application of this theory, it controls the chaos of stochastic Lii system using impulsive control method, and numerical simulations are employed to verify the feasibility of this method.
文摘It has been recently found that many models were established with the aid of fractional derivatives, such as viscoelastic systems, colored noise, electrode-electrolyte polarization, dielectric polarization, boundary layer effects in ducts, electromagnetic waves, quantitative finance, quantum evolution of complex systems, and fractional kinetics. In this paper, the asymptotical stability of higher-dimensional linear fractional differential systems with the Riemann-Liouville fractional order and Caputo fractional order were studied. The asymptotical stability theorems were also derived.
基金This project was supported by the National Natural Science Foundation of China (60274007) NSERC-Canada.
文摘In the area of control theory the time-delay systems have been investigated. It's well known that delays often result in instability, therefore, stability analysis of time-delay systems is an important subject in control theory. As a result, many criteria for testing the stability of linear time-delay systems have been proposed. Significant progress has been made in the theory of impulsive systems and impulsive delay systems in recent years. However, the corresponding theory for uncertain impulsive systems and uncertain impulsive delay systems has not been fully developed. In this paper, robust stability criteria are established for uncertain linear delay impulsive systems by using Lyapunov function, Razumikhin techniques and the results obtained. Some examples are given to illustrate our theory.
基金the National Natural Science Foundation of China(61473340)the Distinguished Professor Foundation of Qianjiang Scholar in Zhejiang Province+1 种基金the National Natural Science Foundation of Zhejiang Province(LQ13A010019)the National Natural Science Foundation of Zhejiang University of Science and Technology(F701108G14).
文摘In this paper we prove a global attractivity result for the unique positive equilibrium point of a difference equation,which improves and generalizes some known ones in the existing literature.Especially,our results completely solve an open problem and some conjectures proposed in[1,2,3,4].
基金Research supported by the National Natural Science Foundation of China(12271220)postgraduate research and practice innovation program of Jiangsu Province(KYCX24-3010)。
文摘Dynamical behaviors of a class of second order Hopfield neural networks with time delays is investigated.The existence of a unique equilibrium point is proved by using Brouwer's fixed point theorem and the counter proof method,and some sufficient conditions for the global asymptotic stability of the equilibrium point are obtained through the combination of a suitable Lyapunov function and an algebraic inequality technique.
文摘In this paper, we treat the spread of COVID-19 using a delayed stochastic SVIRS (Susceptible, Infected, Recovered, Susceptible) epidemic model with a general incidence rate and differential susceptibility. We start with a deterministic model, then add random perturbations on the contact rate using white noise to obtain a stochastic model. We first show that the delayed stochastic differential equation that describes the model has a unique global positive solution for any positive initial value. Under the condition R<sub>0</sub> ≤ 1, we prove the almost sure asymptotic stability of the disease-free equilibrium of the model.
基金This work was supported by the National Key Basic Research Special Found (Grant No. G1998020307) the National Natural Science Foundation of China (Grant No. 19631150).
文摘We theoretically investigate the asymptotical stability, local bifurcations and chaos of discrete-time recurrent neural networks with the form of $$u_i \left( {t + 1} \right) = ku_i \left( t \right) + \Delta t\left( {\sum\limits_{j = 1}^n {a_{ij} v_j \left( t \right) + a_i } } \right), i = 1,2, \cdots ,n,$$ , where the input-output function is defined as a generalized sigmoid function, such asv i =2/π arctan(π/2μiμi), $v_i = \frac{2}{\pi }arctan\left( {\frac{\pi }{2}\mu _i u_i } \right)$ and $v_i = \frac{1}{{1 + e^{ - u_i /\varepsilon } }},$ , etc. Numerical simulations are also provided to demonstrate the theoretical results.
基金supported by the Natural Science Foundation of Pujian Province(2013J01011,2013J01010)the Foundation of Fujian Edication Bureau(JA13361)
文摘By constructing a suitable Lyapunov function,sufficient conditions which ensure the global asymptotical stability of the positive equilibrium and boundary equilibrium of an obligate Lotka-Volterra mutualism model are obtained,respectively.It is shown that the conditions which ensure the local stability of the nonnegative equilibria is enough to ensure their global asymptotical stability.Our result supplements and complements some known result.
基金This paper is supportea by National Natural Science Foundation of China
文摘In this paper, we first introduce the model of discrete-time neural networkswith generalized input--output function and present a proof of the existence of afixed point by Schauder fixed-point principle. Secondly, we study the uniformlyasymptotical stability of equilibrium in non-autonomous discrete--time neuralnetworks and give some sufficient conditions that guarantee the stability of itby using the converse theorem of Lyapunov function. Finally, several examplesand numerical simulations are given to illustrate and reinforce our theories.
基金Sponsored by the National Natural Science Foundation of China(Grant No.10771044)the Natural Science Foundation of Hunan Province(Grant No.09JJ6006)+2 种基金the Excellent Youth Foundation of Educational Committee of Hunan Provincial (Grant No.08B005)the Hunan Postdoctoral Scientific Pro-gram(Grant No.2009RS3020)the Scientific Research Funds of Hunan Provincial Education Department of China(Grant No.09C059)
文摘In this paper,the asymptotical mean-square stability analysis problem is considered for a class of cellular neural networks (CNNs) with random delay. Compared with the previous work,the delay is modeled by a continuous-time homogeneous Markov process with a finite number of states. The main purpose of this paper is to establish easily verifiable conditions under which the random delayed cellular neural network is asymptotic mean-square stability. By using some stochastic analysis techniques and Lyapunov-Krasovskii functional,some conditions are derived to ensure that the cellular neural networks with random delay is asymptotical mean-square stability. A numerical example is exploited to show the vadlidness of the established results.
文摘The asymptotic stability of two species stochastic Lotka-Volterra model is explored in this paper. Firstly, the Lotka-Volterra model with random parameter is built and reduced into the equivalent deterministic system by orthogonal polynomial approximation. Then, the linear stability theory and Routh-Hurwitz criterion for nonlinear deterministic systems are applied to the equivalent one. At last, at the aid of Lyapunov second method, we obtain that as the random intensity or statistical parameter of random variable is changed, the stability about stochastic Lotka-Volterra model is different from the deterministic system.
文摘The sex ratio of crocodiles is strongly biased towards females, often as high as 10 females to 1 male. In crocodilians, the temperature of egg incubation is the environmental factor determining sex. If the temperature is low, around 30˚C, the hatchlings are all females. Higher temperature, around 34˚C, hatch all males. This study was made to consider the asymptotic stability of a positive equilibrium point in a nonlinear discrete model of the basic nesting population model, which is described in three-region depending on the temperature of egg incubation. This model is based on key life-historical data and Murray’s research. To study above, we have applied the classical linearization method and P. Cull’s method and moreover, we employ non-standard discretization methods for later our Equations (6)-(8) and (15).
基金the National Natural Science Foundation of China (60574011)the National Natural Science Foundation of Liaoning Province (2050770).
文摘Based on bounded network-induced time-delay, the networked control system is modeled as a linear time-variant singular system. Using the Lyapunov theory and the linear matrix inequality approach, the criteria for delay-independent stability and delay-dependent stability of singular networked control systems are derived and transformed to a feasibility problem of linear matrix inequality formulation, which can be solved by the Matlab LMI toolbox, and the feasible solutions provide the maximum allowable delay bound that makes the system stable. A numerical example is provided, which shows that the analysis method is valid and the stability criteria are feasible.
基金supported by the National Natural Science Foundation of China(10971166,10901131)the National High Technology Research and Development Program of China(863 Program,2009AA01A135)the Natural Science Foundation of Xinjiang Province(2010211B04)
文摘This article proposes a diffused hepatitis B virus (HBV) model with CTL immune response and nonlinear incidence for the control of viral infections. By means of different Lyapunov functions, the global asymptotical properties of the viral-free equilibrium and immune-free equilibrium of the model are obtained. Global stability of the positive equilibrium of the model is also considered. The results show that the free diffusion of the virus has no effect on the global stability of such HBV infection problem with Neumann homogeneous boundary conditions.
文摘There are many works on the asymptotic stability of second dimensional nonlinear differential equation. In particular, these results only concern with the system which includes one or two terms, whereas few works concern with system which includes more than two terms. In this paper, system which includes four nonlinear terms are studies. We obtain the global asymptotic stability of zero solution, and discard the condition which require the Liapunov function trends to infinity, and only require that the positive orbit is bounded.
基金The authors would like to thank the reviewers for their detailed reviews and constructive comments, which have helped improve the quality of this paper. This work was supported in part by Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China under Grant No. IRT1078 Key Program of NSFC-Guangdong Union Foundation under Grant No. U1135002+3 种基金 National Science and Technology Major Project of the Ministry of Science and Technology of China under Grant No. 2011ZX03005- 002 National Natural Science Foundation of China under Grant No.61173135 Natural Science Foundation of Shaanxi Province under Grant No.2014JQ8297 Fundamental Research Funds for the Central Universities of Ministry of Education of China under Grant Nos. JY 10000903001, K5051303007, K5051203012.
文摘Investigating the stability of information spreading over SNS helps to understand the principles inherent in the spreading behavior.This paper explores the mechanisms of information spreading including stifling mechanism,latent mechanism and forgetting mechanism,establishes a refined SEIR model,and builds the corresponding mean-field equations.The methods of the differential dynamics and the next generation matrix are used to calculate the equilibriums and the basic reproductive number,and the asymptotical stability of the network equilibriums are proved theoretically.Simulation experiments are carried out to analyze the effect of the spreading mechanisms on the information spreading process and the results support our conclusions.
基金supported by National Natural Science Foundation of China (No. 60674027)
文摘This paper is concerned with the stability analysis for static recurrent neural networks (RNNs) with time-varying delay. By Lyapunov functional method and linear matrix inequality technique, some new delay-dependent conditions are established to ensure the asymptotic stability of the neural network. Expressed in linear matrix inequalities (LMIs), the proposed delay-dependent stability conditions can be checked using the recently developed algorithms. A numerical example is given to show that the obtained conditions can provide less conservative results than some existing ones.
基金supported by the National Natural Science Foundation of China(60874114).
文摘The global asymptotical stability for a class of stochastic delayed neural networks (SDNNs) with Maxkovian jumping parameters is considered. By applying Lyapunov functional method and Ito's differential rule, new delay-dependent stability conditions are derived. All results are expressed in terms of linear matrix inequality (LMI), and a numerical example is presented to illustrate the correctness and less conservativeness of the proposed method.