This paper presents an asynchronous output-feed-back control strategy of semi-Markovian systems via sliding mode-based learning technique.Compared with most literature results that require exact prior knowledge of sys...This paper presents an asynchronous output-feed-back control strategy of semi-Markovian systems via sliding mode-based learning technique.Compared with most literature results that require exact prior knowledge of system state and mode information,an asynchronous output-feedback sliding sur-face is adopted in the case of incompletely available state and non-synchronization phenomenon.The holonomic dynamics of the sliding mode are characterized by a descriptor system in which the switching surface is regarded as the fast subsystem and the system dynamics are viewed as the slow subsystem.Based upon the co-occurrence of two subsystems,the sufficient stochastic admissibility criterion of the holonomic dynamics is derived by utilizing the characteristics of cumulative distribution functions.Furthermore,a recursive learning controller is formulated to guarantee the reachability of the sliding manifold and realize the chattering reduction of the asynchronous switching and sliding motion.Finally,the proposed theoretical method is substantia-ted through two numerical simulations with the practical contin-uous stirred tank reactor and F-404 aircraft engine model,respectively.展开更多
This paper revisits the problem of bumpless transfer control(BTC) for discrete-time nondeterministic switched linear systems. The general case of asynchronous switching is considered for the first time in the field of...This paper revisits the problem of bumpless transfer control(BTC) for discrete-time nondeterministic switched linear systems. The general case of asynchronous switching is considered for the first time in the field of BTC for switched systems. A new approach called interpolated bumpless transfer control(IBTC) is proposed, where the bumpless transfer controllers are formulated with the combination of the two adjacent modedependent controller gains, and are interpolated for finite steps once the switching is detected. In contrast with the existing approaches, IBTC does not necessarily run through the full interval of subsystems, as well as possesses the time-varying controller gains(with more flexibility and less conservatism) achieved from a control synthesis allowing for the stability and other performance of the whole switched system. Sufficient conditions ensuring stability and H_(∞) performance of the underlying system by IBTC are developed, and numerical examples verify the theoretical findings.展开更多
In vehicle edge computing(VEC),asynchronous federated learning(AFL)is used,where the edge receives a local model and updates the global model,effectively reducing the global aggregation latency.Due to different amount...In vehicle edge computing(VEC),asynchronous federated learning(AFL)is used,where the edge receives a local model and updates the global model,effectively reducing the global aggregation latency.Due to different amounts of local data,computing capabilities and locations of the vehicles,renewing the global model with same weight is inappropriate.The above factors will affect the local calculation time and upload time of the local model,and the vehicle may also be affected by Byzantine attacks,leading to the deterioration of the vehicle data.However,based on deep reinforcement learning(DRL),we can consider these factors comprehensively to eliminate vehicles with poor performance as much as possible and exclude vehicles that have suffered Byzantine attacks before AFL.At the same time,when aggregating AFL,we can focus on those vehicles with better performance to improve the accuracy and safety of the system.In this paper,we proposed a vehicle selection scheme based on DRL in VEC.In this scheme,vehicle’s mobility,channel conditions with temporal variations,computational resources with temporal variations,different data amount,transmission channel status of vehicles as well as Byzantine attacks were taken into account.Simulation results show that the proposed scheme effectively improves the safety and accuracy of the global model.展开更多
This paper considers the frameasynchronous grant-free rateless multiple access(FAGF-RMA)scenario,where users can initiate access at any symbol time,using shared channel resources to transmit data to the base station.R...This paper considers the frameasynchronous grant-free rateless multiple access(FAGF-RMA)scenario,where users can initiate access at any symbol time,using shared channel resources to transmit data to the base station.Rateless coding is introduced to enhance the reliability of the system.Previous literature has shown that FA-GFRMA can achieve lower access delay than framesynchronous grant-free rateless multiple access(FSGF-RMA),with extreme reliability enabled by rateless coding.To support FA-GF-RMA in more practical scenarios,a joint activity and data detection(JADD)scheme is proposed.Exploiting the feature of sporadic traffic,approximate message passing(AMP)is exploited for transmission signal matrix estimation.Then,to determine the packet start points,a maximum posterior probability(MAP)estimation problem is solved based on the recovered transmitted signals,leveraging the intrinsic power pattern in the codeword.An iterative power-pattern-aided AMP algorithm is devised to enhance the estimation performance of AMP.Simulation results verify that the proposed solution achieves a delay performance that is comparable to the performance limit of FA-GF-RMA.展开更多
First-Input-First-Output (FIFO) buffers are extensively used in contemporary digital processors and System-on-Chips (SoC). There are synchronous FIFOs and asycnrhonous FIFOs. And different sized FIFOs should be implem...First-Input-First-Output (FIFO) buffers are extensively used in contemporary digital processors and System-on-Chips (SoC). There are synchronous FIFOs and asycnrhonous FIFOs. And different sized FIFOs should be implemented in different ways. FIFOs are used not only for the pipeline design within a processor, for the inter-processor communication networks, for example Network-on-Chips (NoCs), but also for the peripherals and the clock domain crossing at the whole SoC level. In this paper, we review the interface, the circuit implementation, and the various usages of FIFOs in various levels of the digital design. We can find that the usage of FIFOs could greatly facilitate the signal storage, signal decoupling, signal transfer, power domain separation and power domain crossing in digital systems. We hope that more attentions are paid to the usages of synchronous and asynchronous FIFOs and more sophististicated usages are discovered by the digital design communities.展开更多
The magnetic field generated in the air gap of the cage asynchronous machine and the harmonics of the magnetomotive forces creating that magnetic field, as well as the related differential leakage, attenuation, asynch...The magnetic field generated in the air gap of the cage asynchronous machine and the harmonics of the magnetomotive forces creating that magnetic field, as well as the related differential leakage, attenuation, asynchronous parasitic torques have been discussed in great detail in the literature, but always separately, for a long time. However, systematization of the phenomenon still awaits. Therefore, it is worth summarizing the completeness of the phenomena in a single study – with a new approach at the same time-in order to reveal the relationships between them. The role of rotor slot number is emphasized much more than before. An existing, commonly used, but still impractical basic figure has been modified to more clearly demonstrate the response of the rotor for the harmonics of the stator. The need to treat differential leakage, asynchronous parasitic torques and attenuation together will be demonstrated: new formula for asynchronous parasitic torque is derived;the long-used characteristic curves for differential leakage and attenuation used separately so far was merged into one, correct curve in order to provide a correct design guide for the engineers.展开更多
We study distributed optimization problems over a directed network,where nodes aim to minimize the sum of local objective functions via directed communications with neighbors.Many algorithms are designed to solve it f...We study distributed optimization problems over a directed network,where nodes aim to minimize the sum of local objective functions via directed communications with neighbors.Many algorithms are designed to solve it for synchronized or randomly activated implementation,which may create deadlocks in practice.In sharp contrast,we propose a fully asynchronous push-pull gradient(APPG) algorithm,where each node updates without waiting for any other node by using possibly delayed information from neighbors.Then,we construct two novel augmented networks to analyze asynchrony and delays,and quantify its convergence rate from the worst-case point of view.Particularly,all nodes of APPG converge to the same optimal solution at a linear rate of O(λ^(k)) if local functions have Lipschitz-continuous gradients and their sum satisfies the Polyak-?ojasiewicz condition(convexity is not required),where λ ∈(0,1) is explicitly given and the virtual counter k increases by one when any node updates.Finally,the advantage of APPG over the synchronous counterpart and its linear speedup efficiency are numerically validated via a logistic regression problem.展开更多
Asynchronous federated learning(AsynFL)can effectivelymitigate the impact of heterogeneity of edge nodes on joint training while satisfying participant user privacy protection and data security.However,the frequent ex...Asynchronous federated learning(AsynFL)can effectivelymitigate the impact of heterogeneity of edge nodes on joint training while satisfying participant user privacy protection and data security.However,the frequent exchange of massive data can lead to excess communication overhead between edge and central nodes regardless of whether the federated learning(FL)algorithm uses synchronous or asynchronous aggregation.Therefore,there is an urgent need for a method that can simultaneously take into account device heterogeneity and edge node energy consumption reduction.This paper proposes a novel Fixed-point Asynchronous Federated Learning(FixedAsynFL)algorithm,which could mitigate the resource consumption caused by frequent data communication while alleviating the effect of device heterogeneity.FixedAsynFL uses fixed-point quantization to compress the local and global models in AsynFL.In order to balance energy consumption and learning accuracy,this paper proposed a quantization scale selection mechanism.This paper examines the mathematical relationship between the quantization scale and energy consumption of the computation/communication process in the FixedAsynFL.Based on considering the upper bound of quantization noise,this paper optimizes the quantization scale by minimizing communication and computation consumption.This paper performs pertinent experiments on the MNIST dataset with several edge nodes of different computing efficiency.The results show that the FixedAsynFL algorithm with an 8-bit quantization can significantly reduce the communication data size by 81.3%and save the computation energy in the training phase by 74.9%without significant loss of accuracy.According to the experimental results,we can see that the proposed AsynFixedFL algorithm can effectively solve the problem of device heterogeneity and energy consumption limitation of edge nodes.展开更多
Terahertz time-domain spectroscopy(THz-TDS)system,as a new means of spectral analysis and detection,plays an increasingly pivotal role in basic scientific research.However,owing to the long scanning time of the tradit...Terahertz time-domain spectroscopy(THz-TDS)system,as a new means of spectral analysis and detection,plays an increasingly pivotal role in basic scientific research.However,owing to the long scanning time of the traditional THz-TDS system and the complex control of the asynchronous optical scanning(ASOPS)system,which requires frequent calibration,we combine traditional THz-TDS and ASOPS systems to form a composite system and propose an all-fiber trigger signal generation method based on the time overlapping interference signal generated by the collinear motion of two laser pulses.Finally,the time-domain and frequency-domain spectra are obtained by using two independent systems in the integrated systems.It is found that the full width at half maximum(FWHM)of the time-domain spectra and the spectral width of the frequency-domain spectra are almost the same,but the sampling speed of the ASOPS system is significantly faster than that of the traditional THz-TDS system,which conduces to the study of the transient characteristics of substances.展开更多
The interactions between players of the prisoner's dilemma game are inferred using observed game data.All participants play the game with their counterparts and gain corresponding rewards during each round of the ...The interactions between players of the prisoner's dilemma game are inferred using observed game data.All participants play the game with their counterparts and gain corresponding rewards during each round of the game.The strategies of each player are updated asynchronously during the game.Two inference methods of the interactions between players are derived with naive mean-field(n MF)approximation and maximum log-likelihood estimation(MLE),respectively.Two methods are tested numerically also for fully connected asymmetric Sherrington-Kirkpatrick models,varying the data length,asymmetric degree,payoff,and system noise(coupling strength).We find that the mean square error of reconstruction for the MLE method is inversely proportional to the data length and typically half(benefit from the extra information of update times)of that by n MF.Both methods are robust to the asymmetric degree but work better for large payoffs.Compared with MLE,n MF is more sensitive to the strength of couplings and prefers weak couplings.展开更多
A novel asynchronous ACS(add-compare-select) processor for Viterbi decoder is described.It is controlled by local handshake signals instead of the globe clock.The circuits of asynchronous adder unit,asynchronous compa...A novel asynchronous ACS(add-compare-select) processor for Viterbi decoder is described.It is controlled by local handshake signals instead of the globe clock.The circuits of asynchronous adder unit,asynchronous comparator unit,and asynchronous selector unit are proposed.A full-custom design of asynchronous 4-bit ACS processor is fabricated in CSMC-HJ 0.6μm CMOS 2P2M mixed-mode process.At a supply voltage of 5V,when it operates at 20MHz,the power consumption is 75.5mW.The processor has no dynamic power consumption when it awaits an opportunity in sleep mode.The results of performance test of asynchronous 4-bit ACS processor show that the average case response time 19.18ns is only 82% of the worst-case response time 23.37ns.Compared with the synchronous 4-bit ACS processor in power consumption and performance by simulation,it reveals that the asynchronous ACS processor has some advantages than the synchronous one.展开更多
In this paper, the stability of iterative learning control with data dropouts is discussed. By the super vector formulation, an iterative learning control (ILC) system with data dropouts can be modeled as an asynchr...In this paper, the stability of iterative learning control with data dropouts is discussed. By the super vector formulation, an iterative learning control (ILC) system with data dropouts can be modeled as an asynchronous dynamical system with rate constraints on events in the iteration domain. The stability condition is provided in the form of linear matrix inequalities (LMIS) depending on the stability of asynchronous dynamical systems. The analysis is supported by simulations.展开更多
Location estimation of underwater sensor networks(USNs)has become a critical technology,due to its fundamental role in the sensing,communication and control of ocean volume.However,the asynchronous clock,security atta...Location estimation of underwater sensor networks(USNs)has become a critical technology,due to its fundamental role in the sensing,communication and control of ocean volume.However,the asynchronous clock,security attack and mobility characteristics of underwater environment make localization much more challenging as compared with terrestrial sensor networks.This paper is concerned with a privacy-preserving asynchronous localization issue for USNs.Particularly,a hybrid network architecture that includes surface buoys,anchor nodes,active sensor nodes and ordinary sensor nodes is constructed.Then,an asynchronous localization protocol is provided,through which two privacy-preserving localization algorithms are designed to estimate the locations of active and ordinary sensor nodes.It is worth mentioning that,the proposed localization algorithms reveal disguised positions to the network,while they do not adopt any homomorphic encryption technique.More importantly,they can eliminate the effect of asynchronous clock,i.e.,clock skew and offset.The performance analyses for the privacy-preserving asynchronous localization algorithms are also presented.Finally,simulation and experiment results reveal that the proposed localization approach can avoid the leakage of position information,while the location accuracy can be significantly enhanced as compared with the other works.展开更多
This paper discusses the numerical modeling of the dynamic coupled analysis of the floating platform and mooring/risers using the asynchronous coupling algorithm with the purpose to improve the computational efficienc...This paper discusses the numerical modeling of the dynamic coupled analysis of the floating platform and mooring/risers using the asynchronous coupling algorithm with the purpose to improve the computational efficiency when multiple lines are connected to the platform. The numerical model of the platform motion simulation in wave is presented. Additionally, how the asynchronous coupling algorithm is implemented during the dynamic coupling analysis is introduced. Through a comparison of the numerical results of our developed model with commercial software for a SPAR platform, the developed numerical model is checked and validated.展开更多
This paper proposes a novel sampled-data asynchronous fuzzy output feedback control approach for active suspension systems in restricted frequency domain.In order to better investigate uncertain suspension dynamics,th...This paper proposes a novel sampled-data asynchronous fuzzy output feedback control approach for active suspension systems in restricted frequency domain.In order to better investigate uncertain suspension dynamics,the sampleddata Takagi-Sugeno(T-S)fuzzy half-car active suspension(HCAS)system is considered,which is further modelled as a continuous system with an input delay.Firstly,considering that the fuzzy system and the fuzzy controller cannot share the identical premises due to the existence of input delay,a reconstructed method is employed to synchronize the time scales of membership functions between the fuzzy controller and the fuzzy system.Secondly,since external disturbances often belong to a restricted frequency range,a finite frequency control criterion is presented for control synthesis to reduce conservatism.Thirdly,given a full information of state variables is hardly available in practical suspension systems,a two-stage method is proposed to calculate the static output feedback control gains.Moreover,an iterative algorithm is proposed to compute the optimum solution.Finally,numerical simulations verify the effectiveness of the proposed controllers.展开更多
This paper describes a real-time beam tuning method with an improved asynchronous advantage actor–critic(A3C)algorithm for accelerator systems.The operating parameters of devices are usually inconsistent with the pre...This paper describes a real-time beam tuning method with an improved asynchronous advantage actor–critic(A3C)algorithm for accelerator systems.The operating parameters of devices are usually inconsistent with the predictions of physical designs because of errors in mechanical matching and installation.Therefore,parameter optimization methods such as pointwise scanning,evolutionary algorithms(EAs),and robust conjugate direction search are widely used in beam tuning to compensate for this inconsistency.However,it is difficult for them to deal with a large number of discrete local optima.The A3C algorithm,which has been applied in the automated control field,provides an approach for improving multi-dimensional optimization.The A3C algorithm is introduced and improved for the real-time beam tuning code for accelerators.Experiments in which optimization is achieved by using pointwise scanning,the genetic algorithm(one kind of EAs),and the A3C-algorithm are conducted and compared to optimize the currents of four steering magnets and two solenoids in the low-energy beam transport section(LEBT)of the Xi’an Proton Application Facility.Optimal currents are determined when the highest transmission of a radio frequency quadrupole(RFQ)accelerator downstream of the LEBT is achieved.The optimal work points of the tuned accelerator were obtained with currents of 0 A,0 A,0 A,and 0.1 A,for the four steering magnets,and 107 A and 96 A for the two solenoids.Furthermore,the highest transmission of the RFQ was 91.2%.Meanwhile,the lower time required for the optimization with the A3C algorithm was successfully verified.Optimization with the A3C algorithm consumed 42%and 78%less time than pointwise scanning with random initialization and pre-trained initialization of weights,respectively.展开更多
The advancement of the Internet of Things(IoT)brings new opportunities for collecting real-time data and deploying machine learning models.Nonetheless,an individual IoT device may not have adequate computing resources...The advancement of the Internet of Things(IoT)brings new opportunities for collecting real-time data and deploying machine learning models.Nonetheless,an individual IoT device may not have adequate computing resources to train and deploy an entire learning model.At the same time,transmitting continuous real-time data to a central server with high computing resource incurs enormous communication costs and raises issues in data security and privacy.Federated learning,a distributed machine learning framework,is a promising solution to train machine learning models with resource-limited devices and edge servers.Yet,the majority of existing works assume an impractically synchronous parameter update manner with homogeneous IoT nodes under stable communication connections.In this paper,we develop an asynchronous federated learning scheme to improve training efficiency for heterogeneous IoT devices under unstable communication network.Particularly,we formulate an asynchronous federated learning model and develop a lightweight node selection algorithm to carry out learning tasks effectively.The proposed algorithm iteratively selects heterogeneous IoT nodes to participate in the global learning aggregation while considering their local computing resource and communication condition.Extensive experimental results demonstrate that our proposed asynchronous federated learning scheme outperforms the state-of-the-art schemes in various settings on independent and identically distributed(i.i.d.)and non-i.i.d.data distribution.展开更多
In this paper, the asynchronous versions of classical iterative methods for solving linear systems of equations are considered. Sufficient conditions for convergence of asynchronous relaxed processes are given for H-m...In this paper, the asynchronous versions of classical iterative methods for solving linear systems of equations are considered. Sufficient conditions for convergence of asynchronous relaxed processes are given for H-matrix by which nor only the requirements of [3] on coefficient matrix are lowered, but also a larger region of convergence than that in [3] is obtained.展开更多
This letter explores the distributed multisensor dynamic system, which has uniform sampling velocity and asynchronous sampling data for different sensors, and puts forward a new gradation fusion algorithm of multisens...This letter explores the distributed multisensor dynamic system, which has uniform sampling velocity and asynchronous sampling data for different sensors, and puts forward a new gradation fusion algorithm of multisensor dynamic system. As the total forecasted increment value between the two adjacent moments is the forecasted estimate value of the corresponding state increment in the fusion center, the new algorithm models the state and the forecasted estimate value of every moment. Kalman filter and all measurements arriving sequentially in the fusion period are employed to update the evaluation of target state step by step, on the condition that the system has obtained the target state evaluation that is based on the overall information in the previous fusion period. Accordingly, in the present period, the fusion evaluation of the target state at each sampling point on the basis of the overall information can be obtained. This letter elaborates the form of this new algorithm. Computer simulation demonstrates that this new algorithm owns greater precision in estimating target state than the present asynchronous fusion algorithm calibrated in time does.展开更多
In order to replace the conventional distributor, a novel asynchronous rotating air distributor, which can optimize the drying ability of fluidized bed and strengthen the drying performance of oil shale particles, is ...In order to replace the conventional distributor, a novel asynchronous rotating air distributor, which can optimize the drying ability of fluidized bed and strengthen the drying performance of oil shale particles, is creatively designed in this study. The rotating speed of the asynchronous rotating air distributor with an embedded center disk and an encircling disk is regulated to achieve the different air supply conditions. The impacts of different drying conditions on the drying characteristic of Wangqing oil shale particles are studied with the help of electronic scales. The dynamics of experimental data is analyzed with 9 common drying models. The results indicate that the particles distribution in fluidized bed can be improved and the drying time can be reduced by decreasing the rotating speed of the embedded center disk and increasing the rotating speed of the encircling disk. The drying process of oil shale particles involves a rising drying rate period, a constant drying rate period and a falling drying rate period. Regulating the air distributor rotating speed reasonably will accelerate the shift of particles from the rising drying rate period to the falling drying rate period directly. The two-term model fits properly the oil shale particles drying simulation among 9 drying models at different air supply conditions. Yet the air absorbed in the particles' pores is diffused along with the moisture evaporation, and a small amount of moisture remains on the wall of fluidized bed in each experiment, thus, the values of drying simulation are less than the experimental values.展开更多
基金supported in part by the National Science Fund for Excellent Young Scholars of China(62222317)the National Science Foundation of China(62303492)+3 种基金the Major Science and Technology Projects in Hunan Province(2021GK1030)the Science and Technology Innovation Program of Hunan Province(2022WZ1001)the Key Research and Development Program of Hunan Province(2023GK2023)the Fundamental Research Funds for the Central Universities of Central South University(2024ZZTS0116)。
文摘This paper presents an asynchronous output-feed-back control strategy of semi-Markovian systems via sliding mode-based learning technique.Compared with most literature results that require exact prior knowledge of system state and mode information,an asynchronous output-feedback sliding sur-face is adopted in the case of incompletely available state and non-synchronization phenomenon.The holonomic dynamics of the sliding mode are characterized by a descriptor system in which the switching surface is regarded as the fast subsystem and the system dynamics are viewed as the slow subsystem.Based upon the co-occurrence of two subsystems,the sufficient stochastic admissibility criterion of the holonomic dynamics is derived by utilizing the characteristics of cumulative distribution functions.Furthermore,a recursive learning controller is formulated to guarantee the reachability of the sliding manifold and realize the chattering reduction of the asynchronous switching and sliding motion.Finally,the proposed theoretical method is substantia-ted through two numerical simulations with the practical contin-uous stirred tank reactor and F-404 aircraft engine model,respectively.
基金partially supported by the National Natural Science Foundation of China (62225305,12072088)the Fundamental Research Funds for the Central Universities,China (HIT.BRET.2022004,HIT.OCEF.2022047,JCKY2022603C016)China Scholarship Council (202306120113)。
文摘This paper revisits the problem of bumpless transfer control(BTC) for discrete-time nondeterministic switched linear systems. The general case of asynchronous switching is considered for the first time in the field of BTC for switched systems. A new approach called interpolated bumpless transfer control(IBTC) is proposed, where the bumpless transfer controllers are formulated with the combination of the two adjacent modedependent controller gains, and are interpolated for finite steps once the switching is detected. In contrast with the existing approaches, IBTC does not necessarily run through the full interval of subsystems, as well as possesses the time-varying controller gains(with more flexibility and less conservatism) achieved from a control synthesis allowing for the stability and other performance of the whole switched system. Sufficient conditions ensuring stability and H_(∞) performance of the underlying system by IBTC are developed, and numerical examples verify the theoretical findings.
基金supported in part by the National Natural Science Foundation of China(No.61701197)in part by the National Key Research and Development Program of China(No.2021YFA1000500(4))in part by the 111 Project(No.B23008).
文摘In vehicle edge computing(VEC),asynchronous federated learning(AFL)is used,where the edge receives a local model and updates the global model,effectively reducing the global aggregation latency.Due to different amounts of local data,computing capabilities and locations of the vehicles,renewing the global model with same weight is inappropriate.The above factors will affect the local calculation time and upload time of the local model,and the vehicle may also be affected by Byzantine attacks,leading to the deterioration of the vehicle data.However,based on deep reinforcement learning(DRL),we can consider these factors comprehensively to eliminate vehicles with poor performance as much as possible and exclude vehicles that have suffered Byzantine attacks before AFL.At the same time,when aggregating AFL,we can focus on those vehicles with better performance to improve the accuracy and safety of the system.In this paper,we proposed a vehicle selection scheme based on DRL in VEC.In this scheme,vehicle’s mobility,channel conditions with temporal variations,computational resources with temporal variations,different data amount,transmission channel status of vehicles as well as Byzantine attacks were taken into account.Simulation results show that the proposed scheme effectively improves the safety and accuracy of the global model.
基金supported by the projects as follows,Key Research and Development Program of China(2018YFB1801102)the Key Research and Development Program of China(2020YFB1806603)+3 种基金Fundamental Research Funds for the Central Universities under Grant 2242022k60006Tsinghua University-China Mobile Communications Group Co.,Ltd.Joint Institute,Civil Aerospace Technology Project(D040202)National Natural Science Foundation of China(Grant No.92067206)TsinghuaQualcomm Joint Project,Tsinghua University Initiative Scientific Research Program(20193080005)。
文摘This paper considers the frameasynchronous grant-free rateless multiple access(FAGF-RMA)scenario,where users can initiate access at any symbol time,using shared channel resources to transmit data to the base station.Rateless coding is introduced to enhance the reliability of the system.Previous literature has shown that FA-GFRMA can achieve lower access delay than framesynchronous grant-free rateless multiple access(FSGF-RMA),with extreme reliability enabled by rateless coding.To support FA-GF-RMA in more practical scenarios,a joint activity and data detection(JADD)scheme is proposed.Exploiting the feature of sporadic traffic,approximate message passing(AMP)is exploited for transmission signal matrix estimation.Then,to determine the packet start points,a maximum posterior probability(MAP)estimation problem is solved based on the recovered transmitted signals,leveraging the intrinsic power pattern in the codeword.An iterative power-pattern-aided AMP algorithm is devised to enhance the estimation performance of AMP.Simulation results verify that the proposed solution achieves a delay performance that is comparable to the performance limit of FA-GF-RMA.
文摘First-Input-First-Output (FIFO) buffers are extensively used in contemporary digital processors and System-on-Chips (SoC). There are synchronous FIFOs and asycnrhonous FIFOs. And different sized FIFOs should be implemented in different ways. FIFOs are used not only for the pipeline design within a processor, for the inter-processor communication networks, for example Network-on-Chips (NoCs), but also for the peripherals and the clock domain crossing at the whole SoC level. In this paper, we review the interface, the circuit implementation, and the various usages of FIFOs in various levels of the digital design. We can find that the usage of FIFOs could greatly facilitate the signal storage, signal decoupling, signal transfer, power domain separation and power domain crossing in digital systems. We hope that more attentions are paid to the usages of synchronous and asynchronous FIFOs and more sophististicated usages are discovered by the digital design communities.
文摘The magnetic field generated in the air gap of the cage asynchronous machine and the harmonics of the magnetomotive forces creating that magnetic field, as well as the related differential leakage, attenuation, asynchronous parasitic torques have been discussed in great detail in the literature, but always separately, for a long time. However, systematization of the phenomenon still awaits. Therefore, it is worth summarizing the completeness of the phenomena in a single study – with a new approach at the same time-in order to reveal the relationships between them. The role of rotor slot number is emphasized much more than before. An existing, commonly used, but still impractical basic figure has been modified to more clearly demonstrate the response of the rotor for the harmonics of the stator. The need to treat differential leakage, asynchronous parasitic torques and attenuation together will be demonstrated: new formula for asynchronous parasitic torque is derived;the long-used characteristic curves for differential leakage and attenuation used separately so far was merged into one, correct curve in order to provide a correct design guide for the engineers.
基金Supported by National Natural Science Foundation of China(62033006,62203254)。
文摘We study distributed optimization problems over a directed network,where nodes aim to minimize the sum of local objective functions via directed communications with neighbors.Many algorithms are designed to solve it for synchronized or randomly activated implementation,which may create deadlocks in practice.In sharp contrast,we propose a fully asynchronous push-pull gradient(APPG) algorithm,where each node updates without waiting for any other node by using possibly delayed information from neighbors.Then,we construct two novel augmented networks to analyze asynchrony and delays,and quantify its convergence rate from the worst-case point of view.Particularly,all nodes of APPG converge to the same optimal solution at a linear rate of O(λ^(k)) if local functions have Lipschitz-continuous gradients and their sum satisfies the Polyak-?ojasiewicz condition(convexity is not required),where λ ∈(0,1) is explicitly given and the virtual counter k increases by one when any node updates.Finally,the advantage of APPG over the synchronous counterpart and its linear speedup efficiency are numerically validated via a logistic regression problem.
基金This work was funded by National Key R&D Program of China(Grant No.2020YFB0906003).
文摘Asynchronous federated learning(AsynFL)can effectivelymitigate the impact of heterogeneity of edge nodes on joint training while satisfying participant user privacy protection and data security.However,the frequent exchange of massive data can lead to excess communication overhead between edge and central nodes regardless of whether the federated learning(FL)algorithm uses synchronous or asynchronous aggregation.Therefore,there is an urgent need for a method that can simultaneously take into account device heterogeneity and edge node energy consumption reduction.This paper proposes a novel Fixed-point Asynchronous Federated Learning(FixedAsynFL)algorithm,which could mitigate the resource consumption caused by frequent data communication while alleviating the effect of device heterogeneity.FixedAsynFL uses fixed-point quantization to compress the local and global models in AsynFL.In order to balance energy consumption and learning accuracy,this paper proposed a quantization scale selection mechanism.This paper examines the mathematical relationship between the quantization scale and energy consumption of the computation/communication process in the FixedAsynFL.Based on considering the upper bound of quantization noise,this paper optimizes the quantization scale by minimizing communication and computation consumption.This paper performs pertinent experiments on the MNIST dataset with several edge nodes of different computing efficiency.The results show that the FixedAsynFL algorithm with an 8-bit quantization can significantly reduce the communication data size by 81.3%and save the computation energy in the training phase by 74.9%without significant loss of accuracy.According to the experimental results,we can see that the proposed AsynFixedFL algorithm can effectively solve the problem of device heterogeneity and energy consumption limitation of edge nodes.
基金Project supported by the National Key Research and Development Program of China(Grant No.2021YFB3200100)the National Natural Science Foundation of China(Grant No.61575131)。
文摘Terahertz time-domain spectroscopy(THz-TDS)system,as a new means of spectral analysis and detection,plays an increasingly pivotal role in basic scientific research.However,owing to the long scanning time of the traditional THz-TDS system and the complex control of the asynchronous optical scanning(ASOPS)system,which requires frequent calibration,we combine traditional THz-TDS and ASOPS systems to form a composite system and propose an all-fiber trigger signal generation method based on the time overlapping interference signal generated by the collinear motion of two laser pulses.Finally,the time-domain and frequency-domain spectra are obtained by using two independent systems in the integrated systems.It is found that the full width at half maximum(FWHM)of the time-domain spectra and the spectral width of the frequency-domain spectra are almost the same,but the sampling speed of the ASOPS system is significantly faster than that of the traditional THz-TDS system,which conduces to the study of the transient characteristics of substances.
基金supported by the National Natural Science Foundation of China(Grant Nos.11705079 and 11705279)the Scientific Research Foundation of Nanjing University of Posts and Telecommunications(Grant Nos.NY221101 and NY222134)the Science and Technology Innovation Training Program(Grant No.STITP 202210293044Z)。
文摘The interactions between players of the prisoner's dilemma game are inferred using observed game data.All participants play the game with their counterparts and gain corresponding rewards during each round of the game.The strategies of each player are updated asynchronously during the game.Two inference methods of the interactions between players are derived with naive mean-field(n MF)approximation and maximum log-likelihood estimation(MLE),respectively.Two methods are tested numerically also for fully connected asymmetric Sherrington-Kirkpatrick models,varying the data length,asymmetric degree,payoff,and system noise(coupling strength).We find that the mean square error of reconstruction for the MLE method is inversely proportional to the data length and typically half(benefit from the extra information of update times)of that by n MF.Both methods are robust to the asymmetric degree but work better for large payoffs.Compared with MLE,n MF is more sensitive to the strength of couplings and prefers weak couplings.
文摘A novel asynchronous ACS(add-compare-select) processor for Viterbi decoder is described.It is controlled by local handshake signals instead of the globe clock.The circuits of asynchronous adder unit,asynchronous comparator unit,and asynchronous selector unit are proposed.A full-custom design of asynchronous 4-bit ACS processor is fabricated in CSMC-HJ 0.6μm CMOS 2P2M mixed-mode process.At a supply voltage of 5V,when it operates at 20MHz,the power consumption is 75.5mW.The processor has no dynamic power consumption when it awaits an opportunity in sleep mode.The results of performance test of asynchronous 4-bit ACS processor show that the average case response time 19.18ns is only 82% of the worst-case response time 23.37ns.Compared with the synchronous 4-bit ACS processor in power consumption and performance by simulation,it reveals that the asynchronous ACS processor has some advantages than the synchronous one.
基金supported by General Program (No. 60774022)State Key Program (No. 60834001) of National Natural Science Foundation of China
文摘In this paper, the stability of iterative learning control with data dropouts is discussed. By the super vector formulation, an iterative learning control (ILC) system with data dropouts can be modeled as an asynchronous dynamical system with rate constraints on events in the iteration domain. The stability condition is provided in the form of linear matrix inequalities (LMIS) depending on the stability of asynchronous dynamical systems. The analysis is supported by simulations.
基金supported in part by the National Natural Science Foundation of China(61873345,61973263)the Youth Talent Support Program of Hebei(BJ2018050,BJ2020031)+2 种基金the Teturned Overseas Chinese Scholar Foundation of Hebei(C201829)the Natural Science Foundation of Hebei(F2020203002)the Postgraduate Innovation Fund Project of Hebei(CXZZSS2019047)。
文摘Location estimation of underwater sensor networks(USNs)has become a critical technology,due to its fundamental role in the sensing,communication and control of ocean volume.However,the asynchronous clock,security attack and mobility characteristics of underwater environment make localization much more challenging as compared with terrestrial sensor networks.This paper is concerned with a privacy-preserving asynchronous localization issue for USNs.Particularly,a hybrid network architecture that includes surface buoys,anchor nodes,active sensor nodes and ordinary sensor nodes is constructed.Then,an asynchronous localization protocol is provided,through which two privacy-preserving localization algorithms are designed to estimate the locations of active and ordinary sensor nodes.It is worth mentioning that,the proposed localization algorithms reveal disguised positions to the network,while they do not adopt any homomorphic encryption technique.More importantly,they can eliminate the effect of asynchronous clock,i.e.,clock skew and offset.The performance analyses for the privacy-preserving asynchronous localization algorithms are also presented.Finally,simulation and experiment results reveal that the proposed localization approach can avoid the leakage of position information,while the location accuracy can be significantly enhanced as compared with the other works.
基金Supported by the National Natural Science Foundation of China under Grant No.51109040
文摘This paper discusses the numerical modeling of the dynamic coupled analysis of the floating platform and mooring/risers using the asynchronous coupling algorithm with the purpose to improve the computational efficiency when multiple lines are connected to the platform. The numerical model of the platform motion simulation in wave is presented. Additionally, how the asynchronous coupling algorithm is implemented during the dynamic coupling analysis is introduced. Through a comparison of the numerical results of our developed model with commercial software for a SPAR platform, the developed numerical model is checked and validated.
基金supported by the National Natural Science Foundation of China(51705084)the Natural Science Foundation of Guangdong Province of China(2018A030313999,2019A1515011602)+2 种基金the Fundamental Research Funds for the Central Universities(2018MS46,N2003032)the Opening Project of Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing,South China University of Technology(2019kfkt06)the Research Grants of the University of Macao(MYRG2017-00135-FST,MYRG2019-00028-FST)。
文摘This paper proposes a novel sampled-data asynchronous fuzzy output feedback control approach for active suspension systems in restricted frequency domain.In order to better investigate uncertain suspension dynamics,the sampleddata Takagi-Sugeno(T-S)fuzzy half-car active suspension(HCAS)system is considered,which is further modelled as a continuous system with an input delay.Firstly,considering that the fuzzy system and the fuzzy controller cannot share the identical premises due to the existence of input delay,a reconstructed method is employed to synchronize the time scales of membership functions between the fuzzy controller and the fuzzy system.Secondly,since external disturbances often belong to a restricted frequency range,a finite frequency control criterion is presented for control synthesis to reduce conservatism.Thirdly,given a full information of state variables is hardly available in practical suspension systems,a two-stage method is proposed to calculate the static output feedback control gains.Moreover,an iterative algorithm is proposed to compute the optimum solution.Finally,numerical simulations verify the effectiveness of the proposed controllers.
文摘This paper describes a real-time beam tuning method with an improved asynchronous advantage actor–critic(A3C)algorithm for accelerator systems.The operating parameters of devices are usually inconsistent with the predictions of physical designs because of errors in mechanical matching and installation.Therefore,parameter optimization methods such as pointwise scanning,evolutionary algorithms(EAs),and robust conjugate direction search are widely used in beam tuning to compensate for this inconsistency.However,it is difficult for them to deal with a large number of discrete local optima.The A3C algorithm,which has been applied in the automated control field,provides an approach for improving multi-dimensional optimization.The A3C algorithm is introduced and improved for the real-time beam tuning code for accelerators.Experiments in which optimization is achieved by using pointwise scanning,the genetic algorithm(one kind of EAs),and the A3C-algorithm are conducted and compared to optimize the currents of four steering magnets and two solenoids in the low-energy beam transport section(LEBT)of the Xi’an Proton Application Facility.Optimal currents are determined when the highest transmission of a radio frequency quadrupole(RFQ)accelerator downstream of the LEBT is achieved.The optimal work points of the tuned accelerator were obtained with currents of 0 A,0 A,0 A,and 0.1 A,for the four steering magnets,and 107 A and 96 A for the two solenoids.Furthermore,the highest transmission of the RFQ was 91.2%.Meanwhile,the lower time required for the optimization with the A3C algorithm was successfully verified.Optimization with the A3C algorithm consumed 42%and 78%less time than pointwise scanning with random initialization and pre-trained initialization of weights,respectively.
文摘The advancement of the Internet of Things(IoT)brings new opportunities for collecting real-time data and deploying machine learning models.Nonetheless,an individual IoT device may not have adequate computing resources to train and deploy an entire learning model.At the same time,transmitting continuous real-time data to a central server with high computing resource incurs enormous communication costs and raises issues in data security and privacy.Federated learning,a distributed machine learning framework,is a promising solution to train machine learning models with resource-limited devices and edge servers.Yet,the majority of existing works assume an impractically synchronous parameter update manner with homogeneous IoT nodes under stable communication connections.In this paper,we develop an asynchronous federated learning scheme to improve training efficiency for heterogeneous IoT devices under unstable communication network.Particularly,we formulate an asynchronous federated learning model and develop a lightweight node selection algorithm to carry out learning tasks effectively.The proposed algorithm iteratively selects heterogeneous IoT nodes to participate in the global learning aggregation while considering their local computing resource and communication condition.Extensive experimental results demonstrate that our proposed asynchronous federated learning scheme outperforms the state-of-the-art schemes in various settings on independent and identically distributed(i.i.d.)and non-i.i.d.data distribution.
文摘In this paper, the asynchronous versions of classical iterative methods for solving linear systems of equations are considered. Sufficient conditions for convergence of asynchronous relaxed processes are given for H-matrix by which nor only the requirements of [3] on coefficient matrix are lowered, but also a larger region of convergence than that in [3] is obtained.
基金Supported by the National Natural Science Foundation of China (No.60434020, 60374020)International Cooperation Item of Henan (No.0446650006)Henan Outstanding Youth Science Fund (No.0312001900).
文摘This letter explores the distributed multisensor dynamic system, which has uniform sampling velocity and asynchronous sampling data for different sensors, and puts forward a new gradation fusion algorithm of multisensor dynamic system. As the total forecasted increment value between the two adjacent moments is the forecasted estimate value of the corresponding state increment in the fusion center, the new algorithm models the state and the forecasted estimate value of every moment. Kalman filter and all measurements arriving sequentially in the fusion period are employed to update the evaluation of target state step by step, on the condition that the system has obtained the target state evaluation that is based on the overall information in the previous fusion period. Accordingly, in the present period, the fusion evaluation of the target state at each sampling point on the basis of the overall information can be obtained. This letter elaborates the form of this new algorithm. Computer simulation demonstrates that this new algorithm owns greater precision in estimating target state than the present asynchronous fusion algorithm calibrated in time does.
基金supported by the National Natural Science Foundation of China(Grant No.51276033,No.51541608)
文摘In order to replace the conventional distributor, a novel asynchronous rotating air distributor, which can optimize the drying ability of fluidized bed and strengthen the drying performance of oil shale particles, is creatively designed in this study. The rotating speed of the asynchronous rotating air distributor with an embedded center disk and an encircling disk is regulated to achieve the different air supply conditions. The impacts of different drying conditions on the drying characteristic of Wangqing oil shale particles are studied with the help of electronic scales. The dynamics of experimental data is analyzed with 9 common drying models. The results indicate that the particles distribution in fluidized bed can be improved and the drying time can be reduced by decreasing the rotating speed of the embedded center disk and increasing the rotating speed of the encircling disk. The drying process of oil shale particles involves a rising drying rate period, a constant drying rate period and a falling drying rate period. Regulating the air distributor rotating speed reasonably will accelerate the shift of particles from the rising drying rate period to the falling drying rate period directly. The two-term model fits properly the oil shale particles drying simulation among 9 drying models at different air supply conditions. Yet the air absorbed in the particles' pores is diffused along with the moisture evaporation, and a small amount of moisture remains on the wall of fluidized bed in each experiment, thus, the values of drying simulation are less than the experimental values.