The interactions between players of the prisoner's dilemma game are inferred using observed game data.All participants play the game with their counterparts and gain corresponding rewards during each round of the ...The interactions between players of the prisoner's dilemma game are inferred using observed game data.All participants play the game with their counterparts and gain corresponding rewards during each round of the game.The strategies of each player are updated asynchronously during the game.Two inference methods of the interactions between players are derived with naive mean-field(n MF)approximation and maximum log-likelihood estimation(MLE),respectively.Two methods are tested numerically also for fully connected asymmetric Sherrington-Kirkpatrick models,varying the data length,asymmetric degree,payoff,and system noise(coupling strength).We find that the mean square error of reconstruction for the MLE method is inversely proportional to the data length and typically half(benefit from the extra information of update times)of that by n MF.Both methods are robust to the asymmetric degree but work better for large payoffs.Compared with MLE,n MF is more sensitive to the strength of couplings and prefers weak couplings.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11705079 and 11705279)the Scientific Research Foundation of Nanjing University of Posts and Telecommunications(Grant Nos.NY221101 and NY222134)the Science and Technology Innovation Training Program(Grant No.STITP 202210293044Z)。
文摘The interactions between players of the prisoner's dilemma game are inferred using observed game data.All participants play the game with their counterparts and gain corresponding rewards during each round of the game.The strategies of each player are updated asynchronously during the game.Two inference methods of the interactions between players are derived with naive mean-field(n MF)approximation and maximum log-likelihood estimation(MLE),respectively.Two methods are tested numerically also for fully connected asymmetric Sherrington-Kirkpatrick models,varying the data length,asymmetric degree,payoff,and system noise(coupling strength).We find that the mean square error of reconstruction for the MLE method is inversely proportional to the data length and typically half(benefit from the extra information of update times)of that by n MF.Both methods are robust to the asymmetric degree but work better for large payoffs.Compared with MLE,n MF is more sensitive to the strength of couplings and prefers weak couplings.