Introduction: Ataxia telangiectasia (AT) is a rare disease characterized by immunodeficiency and neurological manifestations. Ataxia, resulting from cerebella atrophy, runs a progressive incapacitating course. Clinica...Introduction: Ataxia telangiectasia (AT) is a rare disease characterized by immunodeficiency and neurological manifestations. Ataxia, resulting from cerebella atrophy, runs a progressive incapacitating course. Clinical monitoring of the disease course is mandatory for early treatment. Aim: To study clinical severity of AT and correlate it with the degree of cerebellar atrophy. Patients and Methods: We retrospectively studied all children (less than 14 years) with AT seen at Hamad General Hospital Clinics between 1998-2013. We collected basic demographic data, parental consan-guinity, family history, AT clinical severity scores, and reviewed CBC with differential counts;alpha-fetoprotein, serum immunoglobulins and lymphocyte subsets. Cranial MRI scans of each subject were reviewed by a neuroradiologist. Cerebellar atrophy was visually and semi-quantitatively scored. Results: We analyzed data on 18 AT children (10 males and 8 females), mean age of 76.9 months. 77.8% had a positive family history of AT and 41.7% parental consanguinity. Lymphopenia was observed in 77.8% and high serum alpha-fetoprotein in 87.5% of children. Clinical severity of ataxia was 17.1 ± 8.4 (mean ± SD);86.7% of patients were moderate-severe. MRI cerebellar atrophy score was 1.9 ± 1.3 (mean ± SD), and moderate in 51% of patients. AT clinical severity score correlated (coefficient r = 0.566) but not statistically significant p = 0.088) with MRI cerebellar atrophy scores. Conclusions: Moderate to severe ataxia and marked cerebellar atrophy are quite common in AT children. There is a correlation between AT clinical severity and cerebellar atrophy. Larger prospective studies might further determine the significance of our observations and help practicing practitioners monitor the progression of the disease.展开更多
Ataxia Telangiectasia (AT) is a rare autosomal recessive multisystem disease. The diagnosis is often made on a clinical triad that combines neurological signs dominated by a progressive cerebellar ataxia, oculocutaneo...Ataxia Telangiectasia (AT) is a rare autosomal recessive multisystem disease. The diagnosis is often made on a clinical triad that combines neurological signs dominated by a progressive cerebellar ataxia, oculocutaneous signs (telangiectasia, coffee stain milk), immunodeficiency (humoral and cellular) with sinopulmonary infections and elevated alphaphetoprotein. The diagnosis of AT is usually early, however, some forms may be revealed late. We reported a case of a 19-year-old patient, admitted for severe pneumonia with Klebsiella Pneumonia. In its history, it was found a notion of recurrent respiratory infections and bronchiectasis. In its clinical examination, it had been discovered cerebellar ataxia and occulocutaneous telangiectasia. The determination of plasmatic alphafoetoprotein was elevated, and the search of immunodeficiency showed a mixed deficit (humoral and cellular) suggesting the diagnosis of AT.展开更多
Accumulating evidence indicates that ataxia-telangiectasia mutated kinase is critical for maintaining cellular homeostasis and that it has both nuclear and cytoplasmic functions.However,the functions of ataxia-telangi...Accumulating evidence indicates that ataxia-telangiectasia mutated kinase is critical for maintaining cellular homeostasis and that it has both nuclear and cytoplasmic functions.However,the functions of ataxia-telangiectasia mutated that when lost lead to cerebellar degeneration are still unknown.In this review,we first describe the role of ataxia-telangiectasia mutated in cerebellar pathology.In addition to its canonical nuclear functions in DNA damage response circuits,ataxia-telangiectasia mutated functions in various cytoplasmic and mitochondrial processes that are critically important for cellular homeostasis.We discuss these functions with a focus on the role of ataxia-telangiectasia mutated in maintaining the homeostatic redox state.Finally,we describe the unique functions of ataxia-telangiectasia mutated in various types of neuronal and glial cells including cerebellar granule neurons,astrocytes,and microglial cells.展开更多
Background:Apolipoprotein B mRNA editing catalytic polypeptide(APOBEC),an endogenous mutator,induces DNA damage and activates the ataxia telangiectasia and Rad3-related(ATR)-checkpoint kinase 1(Chk1)pathway.Although c...Background:Apolipoprotein B mRNA editing catalytic polypeptide(APOBEC),an endogenous mutator,induces DNA damage and activates the ataxia telangiectasia and Rad3-related(ATR)-checkpoint kinase 1(Chk1)pathway.Although cisplatin-based therapy is the mainstay for muscle-invasive bladder cancer(MIBC),it has a poor survival rate.Therefore,this study aimed to evaluate the efficacy of an ATR inhibitor combined with cisplatin in the treatment of APOBEC catalytic subunit 3B(APOBEC3B)expressing MIBC.Methods:Immunohistochemical staining was performed to analyze an association between APOBEC3B and ATR in patients with MIBC.The APOBEC3B expression in MIBC cell lines was assessed using real-time polymerase chain reaction and western blot analysis.Western blot analysis was performed to confirm differences in phosphorylated Chk1(pChk1)expression according to the APOBEC3B expression.Cell viability and apoptosis analyses were performed to examine the anti-tumor activity of ATR inhibitors combined with cisplatin.Results:There was a significant association between APOBEC3B and ATR expression in the tumor tissues obtained from patients with MIBC.Cells with higher APOBEC3B expression showed higher pChk1 expression than cells expressing low APOBEC3B levels.Combination treatment of ATR inhibitor and cisplatin inhibited cell growth in MIBC cells with a higher APOBEC3B expression.Compared to cisplatin single treatment,combination treatment induced more apoptotic cell death in the cells with higher APOBEC3B expression.Conclusion:Our study shows that APOBEC3B’s higher expression status can enhance the sensitivity of MIBC to cisplatin upon ATR inhibition.This result provides new insight into appropriate patient selection for the effective application of ATR inhibitors in MIBC.展开更多
Objective:The ataxia telangiectasia mutated(ATM)gene is a master regulator in cellular DNA damage response.The dysregulation of ATM expression is frequent in breast cancer,and is known to be involved in the carcinogen...Objective:The ataxia telangiectasia mutated(ATM)gene is a master regulator in cellular DNA damage response.The dysregulation of ATM expression is frequent in breast cancer,and is known to be involved in the carcinogenesis and prognosis of cancer.However,the underlying mechanism remains unclear.The bioinformatic analysis predicted a potential antisense transcript ATM-antisense(AS)from the opposite strand of the ATM gene.The purpose of this study was to identify ATM-AS and investigate the possible effect of ATM-AS on the ATM gene regulation.Methods:Single strand-specific RT-PCR was performed to verify the predicted antisense transcript ATM-AS within the ATM gene locus.qRT-PCR and Western blotting were used to detect the expression levels of ATM-AS and ATM in normal and breast cancer cell lines as well as in tissue samples.Luciferase reporter gene assays,biological mass spectrometry,ChIP-qPCR and RIP were used to explore the function of ATM-AS in regulating the ATM expression.Immunofluorescence and host-cell reactivation(HCR)assay were performed to evaluate the biological significance of ATM-AS in ATM-mediated DNA damage repair.Breast cancer tissue samples were used for evaluating the correlation of the ATM-AS level with the ATM expression as well as prognosis of the patients.Results:The ATM-AS significantly upregulated the ATM gene activity by recruiting KAT5 histone acetyltransferase to the gene promoter.The reduced ATM-AS level led to the abnormal downregulation of ATM expression,and impaired the ATM-mediated DNA damage repair in normal breast cells in vitro.The ATM-AS level was positively correlated with the ATM expression in the examined breast cancer tissue samples,and the patient prognosis.Conclusion:The present study demonstrated that ATM-AS,an antisense transcript located within the ATM gene body,is an essential positive regulator of ATM expression,and functions by mediating the binding of KAT5 to the ATM promoter.These findings uncover the novel mechanism underlying the dysregulation of the ATM gene in breast cancer,and enrich our understanding of how an antisense transcript regulates its host gene.展开更多
文摘Introduction: Ataxia telangiectasia (AT) is a rare disease characterized by immunodeficiency and neurological manifestations. Ataxia, resulting from cerebella atrophy, runs a progressive incapacitating course. Clinical monitoring of the disease course is mandatory for early treatment. Aim: To study clinical severity of AT and correlate it with the degree of cerebellar atrophy. Patients and Methods: We retrospectively studied all children (less than 14 years) with AT seen at Hamad General Hospital Clinics between 1998-2013. We collected basic demographic data, parental consan-guinity, family history, AT clinical severity scores, and reviewed CBC with differential counts;alpha-fetoprotein, serum immunoglobulins and lymphocyte subsets. Cranial MRI scans of each subject were reviewed by a neuroradiologist. Cerebellar atrophy was visually and semi-quantitatively scored. Results: We analyzed data on 18 AT children (10 males and 8 females), mean age of 76.9 months. 77.8% had a positive family history of AT and 41.7% parental consanguinity. Lymphopenia was observed in 77.8% and high serum alpha-fetoprotein in 87.5% of children. Clinical severity of ataxia was 17.1 ± 8.4 (mean ± SD);86.7% of patients were moderate-severe. MRI cerebellar atrophy score was 1.9 ± 1.3 (mean ± SD), and moderate in 51% of patients. AT clinical severity score correlated (coefficient r = 0.566) but not statistically significant p = 0.088) with MRI cerebellar atrophy scores. Conclusions: Moderate to severe ataxia and marked cerebellar atrophy are quite common in AT children. There is a correlation between AT clinical severity and cerebellar atrophy. Larger prospective studies might further determine the significance of our observations and help practicing practitioners monitor the progression of the disease.
文摘Ataxia Telangiectasia (AT) is a rare autosomal recessive multisystem disease. The diagnosis is often made on a clinical triad that combines neurological signs dominated by a progressive cerebellar ataxia, oculocutaneous signs (telangiectasia, coffee stain milk), immunodeficiency (humoral and cellular) with sinopulmonary infections and elevated alphaphetoprotein. The diagnosis of AT is usually early, however, some forms may be revealed late. We reported a case of a 19-year-old patient, admitted for severe pneumonia with Klebsiella Pneumonia. In its history, it was found a notion of recurrent respiratory infections and bronchiectasis. In its clinical examination, it had been discovered cerebellar ataxia and occulocutaneous telangiectasia. The determination of plasmatic alphafoetoprotein was elevated, and the search of immunodeficiency showed a mixed deficit (humoral and cellular) suggesting the diagnosis of AT.
文摘Accumulating evidence indicates that ataxia-telangiectasia mutated kinase is critical for maintaining cellular homeostasis and that it has both nuclear and cytoplasmic functions.However,the functions of ataxia-telangiectasia mutated that when lost lead to cerebellar degeneration are still unknown.In this review,we first describe the role of ataxia-telangiectasia mutated in cerebellar pathology.In addition to its canonical nuclear functions in DNA damage response circuits,ataxia-telangiectasia mutated functions in various cytoplasmic and mitochondrial processes that are critically important for cellular homeostasis.We discuss these functions with a focus on the role of ataxia-telangiectasia mutated in maintaining the homeostatic redox state.Finally,we describe the unique functions of ataxia-telangiectasia mutated in various types of neuronal and glial cells including cerebellar granule neurons,astrocytes,and microglial cells.
基金supported by St.Vincent’s Hospital,the Research Institute of Medical Science(Grant Number:SVHR-2021-03).
文摘Background:Apolipoprotein B mRNA editing catalytic polypeptide(APOBEC),an endogenous mutator,induces DNA damage and activates the ataxia telangiectasia and Rad3-related(ATR)-checkpoint kinase 1(Chk1)pathway.Although cisplatin-based therapy is the mainstay for muscle-invasive bladder cancer(MIBC),it has a poor survival rate.Therefore,this study aimed to evaluate the efficacy of an ATR inhibitor combined with cisplatin in the treatment of APOBEC catalytic subunit 3B(APOBEC3B)expressing MIBC.Methods:Immunohistochemical staining was performed to analyze an association between APOBEC3B and ATR in patients with MIBC.The APOBEC3B expression in MIBC cell lines was assessed using real-time polymerase chain reaction and western blot analysis.Western blot analysis was performed to confirm differences in phosphorylated Chk1(pChk1)expression according to the APOBEC3B expression.Cell viability and apoptosis analyses were performed to examine the anti-tumor activity of ATR inhibitors combined with cisplatin.Results:There was a significant association between APOBEC3B and ATR expression in the tumor tissues obtained from patients with MIBC.Cells with higher APOBEC3B expression showed higher pChk1 expression than cells expressing low APOBEC3B levels.Combination treatment of ATR inhibitor and cisplatin inhibited cell growth in MIBC cells with a higher APOBEC3B expression.Compared to cisplatin single treatment,combination treatment induced more apoptotic cell death in the cells with higher APOBEC3B expression.Conclusion:Our study shows that APOBEC3B’s higher expression status can enhance the sensitivity of MIBC to cisplatin upon ATR inhibition.This result provides new insight into appropriate patient selection for the effective application of ATR inhibitors in MIBC.
基金supported by the National Natural Science Foundation of China(No.81802670 and No.82072580).
文摘Objective:The ataxia telangiectasia mutated(ATM)gene is a master regulator in cellular DNA damage response.The dysregulation of ATM expression is frequent in breast cancer,and is known to be involved in the carcinogenesis and prognosis of cancer.However,the underlying mechanism remains unclear.The bioinformatic analysis predicted a potential antisense transcript ATM-antisense(AS)from the opposite strand of the ATM gene.The purpose of this study was to identify ATM-AS and investigate the possible effect of ATM-AS on the ATM gene regulation.Methods:Single strand-specific RT-PCR was performed to verify the predicted antisense transcript ATM-AS within the ATM gene locus.qRT-PCR and Western blotting were used to detect the expression levels of ATM-AS and ATM in normal and breast cancer cell lines as well as in tissue samples.Luciferase reporter gene assays,biological mass spectrometry,ChIP-qPCR and RIP were used to explore the function of ATM-AS in regulating the ATM expression.Immunofluorescence and host-cell reactivation(HCR)assay were performed to evaluate the biological significance of ATM-AS in ATM-mediated DNA damage repair.Breast cancer tissue samples were used for evaluating the correlation of the ATM-AS level with the ATM expression as well as prognosis of the patients.Results:The ATM-AS significantly upregulated the ATM gene activity by recruiting KAT5 histone acetyltransferase to the gene promoter.The reduced ATM-AS level led to the abnormal downregulation of ATM expression,and impaired the ATM-mediated DNA damage repair in normal breast cells in vitro.The ATM-AS level was positively correlated with the ATM expression in the examined breast cancer tissue samples,and the patient prognosis.Conclusion:The present study demonstrated that ATM-AS,an antisense transcript located within the ATM gene body,is an essential positive regulator of ATM expression,and functions by mediating the binding of KAT5 to the ATM promoter.These findings uncover the novel mechanism underlying the dysregulation of the ATM gene in breast cancer,and enrich our understanding of how an antisense transcript regulates its host gene.