Using ground water vapor pressure and precipitation data at four times of one day during 1985- 2014 in each county( city) of Anyang,precipitable water at each station was calculated,and temporal-spatial distribution...Using ground water vapor pressure and precipitation data at four times of one day during 1985- 2014 in each county( city) of Anyang,precipitable water at each station was calculated,and temporal-spatial distribution of atmospheric maximum precipitable water and its change trend over the years in the city were analyzed. Results showed that atmospheric maximum precipitable water in Anyang City had the characteristics of summer far more than winter,autumn slightly higher than spring,west and south more,and east and north less,and presented the increasing trend year by year. We further analyzed the characteristic of monthly rainfall enhancement potential in each county,and mean in whole year was 80%. In spring and winter,rainfall enhancement potential in the west was bigger than east,while rainfall enhancement potential in the east was bigger than west in summer and autumn. The research provides reference basis for rationally carrying out artificial rainfall work,which could effectively ease uneven temporal-spatial distribution problem of water resource in Anyang City.展开更多
Daily precipitation data from 153 meteorological stations over Northwest China during summer from 1963 to 2012 were selected to analyze the spatiotemporal distribution of extreme summer precipitation frequency.The res...Daily precipitation data from 153 meteorological stations over Northwest China during summer from 1963 to 2012 were selected to analyze the spatiotemporal distribution of extreme summer precipitation frequency.The results show that the extreme precipitation frequency was regional dependent.Southern Gansu,northern Qinghai,and southern Shaanxi provinces exhibited a high extreme precipitation frequency and were prone to abrupt changes in the frequency.Northwest China was further divided into three sub-regions(northern,central,and southern) based on cluster analysis of the 50-yr extreme precipitation frequency series for each meteorological station.The extreme precipitation frequency changes were manifested in the northern region during the late 1970 s and in the central region from the end of the 1980 s to the 1990 s.The southern region fluctuated on a timescale of quasi-10 yr.This study also explored the mechanism of changes in extreme precipitation frequency.The results demonstrate that stratification stability,atmospheric water vapor content,and upward motion all affected the changes in extreme precipitation frequency.展开更多
文摘Using ground water vapor pressure and precipitation data at four times of one day during 1985- 2014 in each county( city) of Anyang,precipitable water at each station was calculated,and temporal-spatial distribution of atmospheric maximum precipitable water and its change trend over the years in the city were analyzed. Results showed that atmospheric maximum precipitable water in Anyang City had the characteristics of summer far more than winter,autumn slightly higher than spring,west and south more,and east and north less,and presented the increasing trend year by year. We further analyzed the characteristic of monthly rainfall enhancement potential in each county,and mean in whole year was 80%. In spring and winter,rainfall enhancement potential in the west was bigger than east,while rainfall enhancement potential in the east was bigger than west in summer and autumn. The research provides reference basis for rationally carrying out artificial rainfall work,which could effectively ease uneven temporal-spatial distribution problem of water resource in Anyang City.
基金Supported by the China Meteorological Administration Special Public Welfare Research Fund(GYHY201006017)National Natural Science Foundation of China(41375121 and 41305079)Scientific Research and Innovation Plan for College Graduates of Jiangsu Province of China(CXZZ13_0500 and CXZZ13_0521)
文摘Daily precipitation data from 153 meteorological stations over Northwest China during summer from 1963 to 2012 were selected to analyze the spatiotemporal distribution of extreme summer precipitation frequency.The results show that the extreme precipitation frequency was regional dependent.Southern Gansu,northern Qinghai,and southern Shaanxi provinces exhibited a high extreme precipitation frequency and were prone to abrupt changes in the frequency.Northwest China was further divided into three sub-regions(northern,central,and southern) based on cluster analysis of the 50-yr extreme precipitation frequency series for each meteorological station.The extreme precipitation frequency changes were manifested in the northern region during the late 1970 s and in the central region from the end of the 1980 s to the 1990 s.The southern region fluctuated on a timescale of quasi-10 yr.This study also explored the mechanism of changes in extreme precipitation frequency.The results demonstrate that stratification stability,atmospheric water vapor content,and upward motion all affected the changes in extreme precipitation frequency.