A three-dimensional variational method is proposed to simultaneously retrieve the 3-D atmospheric temperature and moisture profiles from satellite radiance measurements. To include both vertical structure and the hori...A three-dimensional variational method is proposed to simultaneously retrieve the 3-D atmospheric temperature and moisture profiles from satellite radiance measurements. To include both vertical structure and the horizontal patterns of the atmospheric temperature and moisture, an EOF technique is used to decompose the temperature and moisture field in a 3-D space. A number of numerical simulations are conducted and they demonstrate that the 3-D method is less sensitive to the observation errors compared to the 1-D method. When the observation error is more than 2.0 K, to get the best results, the truncation number for the EOF's expansion have to be restricted to 2 in the 1-D method, while it can be set as large as 40 in a 3-D method. This results in the truncation error being reduced and the retrieval accuracy being improved in the 3-D method. Compared to the 1-D method, the rms errors of the 3-D method are reduced by 48% and 36% for the temperature and moisture retrievals, respectively. Using the real satellite measured brightness temperatures at 0557 UTC 31 July 2002, the temperature and moisture profiles are retrieved over a region (20°-45°N, 100°- 125°E) and compared with 37 collocated radiosonde observations. The results show that the retrieval accuracy with a 3-D method is significantly higher than those with the 1-D method.展开更多
To improve the level of meteorological service for the Oilfield region in the Taklimakan Desert, the Urumqi Institute of Desert Meteorology of the China Meteorological Administration (CMA) conducted a detection expe...To improve the level of meteorological service for the Oilfield region in the Taklimakan Desert, the Urumqi Institute of Desert Meteorology of the China Meteorological Administration (CMA) conducted a detection experiment by means of wind profiling radar (WPR) in Tazhong Oilfield region of Xinjiang, China in July 2010. By using the wind profiler data obtained during the rainfall process on 27 July, this paper analyzed the wind field fea- tures and some related scientific issues of this weather event. The results indicated that: (1) wind profiler data had high temporal resolution and vertical spatial resolution, and could be used to analyze detailed vertical structures of rainfall processes and the characteristics of meso-scale systems. Before and after the rain event on 27 July, the wind field showed multi-layer vertical structures, having an obvious meso-scale wind shear line and three airflows from different directions, speeding up the motion of updraft convergence in the lower atmosphere. Besides, the wind directions before and after the rainfall changed inversely with increasing height. Before the rain, the winds blew clockwise, but after the onset of the rain, the wind directions became counterclockwise mainly; (2) the temperature advection derived from wind profiler data can reproduce the characteristics of low-level thermodynamic evolution in the process of rainfall, which is capable to reflect the variation trend of hydrostatic stability in the atmosphere. In the early stage of the precipitation on 27 July, the lower atmosphere was mainly affected by warm advection which had accumulated unstable energy for the rainfall event and was beneficial for the occurrence of updraft motion and precipitation; (3) the "large-value zone" of the radar reflectivity factor Z was virtually consistent with the onset and end of the rainfall, the height for the formation of rain cloud particles, and precipitation intensity. The reflectivity factor Z during this event varied approximately in the range of 18-38 dBZ and the rain droplets formed mainly at the layer of 3,800-4,500 m.展开更多
Atmospheric temperature-humidity profiles and land or sea surface temperature are coupled actions in the earth system process. Based on the numerical perturbation form of the atmospheric radiative transfer equation, a...Atmospheric temperature-humidity profiles and land or sea surface temperature are coupled actions in the earth system process. Based on the numerical perturbation form of the atmospheric radiative transfer equation, a physics-based algorithm is pre- sented to integrate four pairs of MODIS measurements from the Terra and Aqua satellites to retrieve simultaneously atmospheric temperature-humidity profile, land-surface temperature and emissivity. Three pairs of MODIS data at two field sites in China, Luancheng and Poyang Lake areas, have been chosen to test and validate the model. Two pairs of atmospheric tem- perature and humidity profiles, land surface temperature (LST), and land surface emissivity (LSE) have been retrieved simul- taneously for every pair of MODIS measurements respectively by the proposed physical algorithm for the study area. The synchronous field measurements at two field sites were conducted to validate the retrieval LST, the differences between the retrieved LST and the field measurements are in the range of -0.15 K and 1.11 K. The emissivity errors of MODIS bands 31 and 32, compared with the EOS MODIS LST/LSE data products (MOD11_L2/MYD11_L2 V5) by the physics-based day/night algorithm, are from 0.0018 to 0.44 and from 0.0058 to 1.24, respectively. Meanwhile, the retrieved atmospheric profiles fully agree with the standard atmospheric temperature-water vapor profiles and with the results from single MODIS data onboard Terra or Aqua satellite by the former two-step physical algorithm. Therefore, the proposed algorithm is robust enough to improve the retrieval accuracy of the atmospheric profiles and land surface parameters. And it will have four pairs of the retrieval results for one area each day by integrating these MODIS measurements from Terra and Aqua satellites.展开更多
The 89 and 150 GHz channels operated in window are sensitive to precipitation and humidity. The 183 GHz humidity-sensitive channels and 118 GHz temperature-sensitive channels of the Microwave Humidity and Temperature ...The 89 and 150 GHz channels operated in window are sensitive to precipitation and humidity. The 183 GHz humidity-sensitive channels and 118 GHz temperature-sensitive channels of the Microwave Humidity and Temperature Sounder (MWHTS) on the Chinese Feng Yun 3C MWHTS (FY-3C MWHTS) polar-orbit meteorological satellite responds in part to precipitation. Combining 118 and 183 GHz channels, the paper develops a passive sub-millimeter atmospheric profile and precipitation retrievals algorithm for MWHTS onboard the FY-3C (Feng Yun-3C) satellite. The retrieval algorithm employs a number of back propagation neural network estimators trained and evaluated using the validated global reference physical model NCEP/WRF/ARTS and works for land and seawater with latitude between -40 to 40 degree. NCEP data per 6 hours were downloaded to run the Weather Research and Forecast model WRF, and to derive the typical precipitation data for the whole world. The Atmospheric Radiative Transfer Simulator ARTS is feasible for performing simulations of atmospheric radiative transfer. The results show that the profile retrievals using BP-NN algorithm has the best correlation with those from radiosonde, which is less than 18% and 1 K of root mean square error, respectively. For precipitation rate retrievals, a much better agreement is reached with rain gauge and ECMWF datasets, the RMS is between 0.80 to 30.24 mm/h for sea surface and 0.789 to 33.11 mm/h for land surface according to the classification by precipitation type. Also, the analysis of retrievals located in Tibetan plateau is provided as an example to justify the robustness and performance of retrieving model.展开更多
Remote sensing techniques are a useful tool for continuous observation of the Earth at global scale.However,products derived from remote sensing data require a rigorous validation using in situ data.Moderate Resolutio...Remote sensing techniques are a useful tool for continuous observation of the Earth at global scale.However,products derived from remote sensing data require a rigorous validation using in situ data.Moderate Resolution Imaging Spectroradiometer(MODIS)is not really a sounding instrument,but it does have 16 infrared bands(bands 20-36 covering the spectral range from 3μm to 14μm)that allow the retrieval of temperature and moisture profiles as well as total column integrated magnitudes.In this paper we show the results obtained in the evaluation of MOD07 daytime and nighttime products over the Iberian Peninsula during the decade from 2000 to 2010 using nine radiosonde stations.Although MODIS limitations in comparison with other sounding instruments,the validation provided satisfactory results,with bias(MOD07 minus radiosonde)<0.3 cm and a standard deviation of 0.5 cm for the total column water vapor,and bias around 1 K on average with standard deviations between 2 K and 3 K for air temperature at different pressure levels.On average,bias was positive and below 2 K with standard deviations around 5 K for the dew point temperature case.Large errors were found in this case for pressure levels higher than 50 hPa.展开更多
This paper describes briefly the sounding capabilities of TOVS/ATOVS onboard the NOAA polar-orbiting meteorological satellites,followed by a more detailed review of the retrieval schemes.The ICI physical retrieval sch...This paper describes briefly the sounding capabilities of TOVS/ATOVS onboard the NOAA polar-orbiting meteorological satellites,followed by a more detailed review of the retrieval schemes.The ICI physical retrieval scheme with some adaptations is implemented in our experiment.The analyses of the Chinese regional NWP model are utilized to create a rolling library of initial guess field.Retrieval results validated against both NWP analyses and radiosondes indicate good agreement between ICI retrievals and conventional observations.Preliminary result from the PC-ATOVS Windows display system of NSMC will also be shown.展开更多
MODIS atmospheric profile products(MOD07_L2 and MYD07_L2)have been widely used for near-surface dew point temperature(T_(d))estimation.However,their accuracy over large scale has seldom been evaluated.In this study,we...MODIS atmospheric profile products(MOD07_L2 and MYD07_L2)have been widely used for near-surface dew point temperature(T_(d))estimation.However,their accuracy over large scale has seldom been evaluated.In this study,we validated these two products comprehensively against 2153 stations over China's Mainland.MOD07_L2 was suggested by our study because it achieved higher accuracy in either of two frequently-used methods.To be specific,the root-meansquare error(RMSE)achieved by MOD07_L2 and MYD07_L2 was 5.82 and 7.42℃,respectively.On this basis,a recent ground-based correction method was modified to further improve their accuracy.Our focus is to investigate whether this ground-based approach is applicable to large-scale remote sensing applications.The results show that this new method showed great potential for T_(d) estimation independently from ground observations.Through the introduction of MODIS land surface products,the RMSE it achieved for MOD07_L2 and MYD07_L2 was 5.23 and 5.59℃,respectively.Further analysis shows that it was particularly useful in capturing the annual average T_(d) patterns.The R2,RMSE,and bias of annual average daily mean T_(d) estimates were 0.95,1.84℃,and 0.53℃,and those achieved for annual average instantaneous T_(d) estimates were 0.94,2.09℃,and 0.75℃,respectively.展开更多
基金the 973 Program (Grant No. 2004CB418305)the National Natural Science Foundation of China(Grant No. 40575049).
文摘A three-dimensional variational method is proposed to simultaneously retrieve the 3-D atmospheric temperature and moisture profiles from satellite radiance measurements. To include both vertical structure and the horizontal patterns of the atmospheric temperature and moisture, an EOF technique is used to decompose the temperature and moisture field in a 3-D space. A number of numerical simulations are conducted and they demonstrate that the 3-D method is less sensitive to the observation errors compared to the 1-D method. When the observation error is more than 2.0 K, to get the best results, the truncation number for the EOF's expansion have to be restricted to 2 in the 1-D method, while it can be set as large as 40 in a 3-D method. This results in the truncation error being reduced and the retrieval accuracy being improved in the 3-D method. Compared to the 1-D method, the rms errors of the 3-D method are reduced by 48% and 36% for the temperature and moisture retrievals, respectively. Using the real satellite measured brightness temperatures at 0557 UTC 31 July 2002, the temperature and moisture profiles are retrieved over a region (20°-45°N, 100°- 125°E) and compared with 37 collocated radiosonde observations. The results show that the retrieval accuracy with a 3-D method is significantly higher than those with the 1-D method.
基金co-funded by the National Basic Research Program of China(2010CB951001)the Research Subject with the Support of National Science and Technology(2012BA C23B01)the Central Scientific Research and Operational Project(IDM201002)
文摘To improve the level of meteorological service for the Oilfield region in the Taklimakan Desert, the Urumqi Institute of Desert Meteorology of the China Meteorological Administration (CMA) conducted a detection experiment by means of wind profiling radar (WPR) in Tazhong Oilfield region of Xinjiang, China in July 2010. By using the wind profiler data obtained during the rainfall process on 27 July, this paper analyzed the wind field fea- tures and some related scientific issues of this weather event. The results indicated that: (1) wind profiler data had high temporal resolution and vertical spatial resolution, and could be used to analyze detailed vertical structures of rainfall processes and the characteristics of meso-scale systems. Before and after the rain event on 27 July, the wind field showed multi-layer vertical structures, having an obvious meso-scale wind shear line and three airflows from different directions, speeding up the motion of updraft convergence in the lower atmosphere. Besides, the wind directions before and after the rainfall changed inversely with increasing height. Before the rain, the winds blew clockwise, but after the onset of the rain, the wind directions became counterclockwise mainly; (2) the temperature advection derived from wind profiler data can reproduce the characteristics of low-level thermodynamic evolution in the process of rainfall, which is capable to reflect the variation trend of hydrostatic stability in the atmosphere. In the early stage of the precipitation on 27 July, the lower atmosphere was mainly affected by warm advection which had accumulated unstable energy for the rainfall event and was beneficial for the occurrence of updraft motion and precipitation; (3) the "large-value zone" of the radar reflectivity factor Z was virtually consistent with the onset and end of the rainfall, the height for the formation of rain cloud particles, and precipitation intensity. The reflectivity factor Z during this event varied approximately in the range of 18-38 dBZ and the rain droplets formed mainly at the layer of 3,800-4,500 m.
基金supported by the National Natural Science Foundation of China (Grant No. 40471086)the National High Technology Research and Development Program of China (Grant No. 2006AA12Z102)
文摘Atmospheric temperature-humidity profiles and land or sea surface temperature are coupled actions in the earth system process. Based on the numerical perturbation form of the atmospheric radiative transfer equation, a physics-based algorithm is pre- sented to integrate four pairs of MODIS measurements from the Terra and Aqua satellites to retrieve simultaneously atmospheric temperature-humidity profile, land-surface temperature and emissivity. Three pairs of MODIS data at two field sites in China, Luancheng and Poyang Lake areas, have been chosen to test and validate the model. Two pairs of atmospheric tem- perature and humidity profiles, land surface temperature (LST), and land surface emissivity (LSE) have been retrieved simul- taneously for every pair of MODIS measurements respectively by the proposed physical algorithm for the study area. The synchronous field measurements at two field sites were conducted to validate the retrieval LST, the differences between the retrieved LST and the field measurements are in the range of -0.15 K and 1.11 K. The emissivity errors of MODIS bands 31 and 32, compared with the EOS MODIS LST/LSE data products (MOD11_L2/MYD11_L2 V5) by the physics-based day/night algorithm, are from 0.0018 to 0.44 and from 0.0058 to 1.24, respectively. Meanwhile, the retrieved atmospheric profiles fully agree with the standard atmospheric temperature-water vapor profiles and with the results from single MODIS data onboard Terra or Aqua satellite by the former two-step physical algorithm. Therefore, the proposed algorithm is robust enough to improve the retrieval accuracy of the atmospheric profiles and land surface parameters. And it will have four pairs of the retrieval results for one area each day by integrating these MODIS measurements from Terra and Aqua satellites.
文摘The 89 and 150 GHz channels operated in window are sensitive to precipitation and humidity. The 183 GHz humidity-sensitive channels and 118 GHz temperature-sensitive channels of the Microwave Humidity and Temperature Sounder (MWHTS) on the Chinese Feng Yun 3C MWHTS (FY-3C MWHTS) polar-orbit meteorological satellite responds in part to precipitation. Combining 118 and 183 GHz channels, the paper develops a passive sub-millimeter atmospheric profile and precipitation retrievals algorithm for MWHTS onboard the FY-3C (Feng Yun-3C) satellite. The retrieval algorithm employs a number of back propagation neural network estimators trained and evaluated using the validated global reference physical model NCEP/WRF/ARTS and works for land and seawater with latitude between -40 to 40 degree. NCEP data per 6 hours were downloaded to run the Weather Research and Forecast model WRF, and to derive the typical precipitation data for the whole world. The Atmospheric Radiative Transfer Simulator ARTS is feasible for performing simulations of atmospheric radiative transfer. The results show that the profile retrievals using BP-NN algorithm has the best correlation with those from radiosonde, which is less than 18% and 1 K of root mean square error, respectively. For precipitation rate retrievals, a much better agreement is reached with rain gauge and ECMWF datasets, the RMS is between 0.80 to 30.24 mm/h for sea surface and 0.789 to 33.11 mm/h for land surface according to the classification by precipitation type. Also, the analysis of retrievals located in Tibetan plateau is provided as an example to justify the robustness and performance of retrieving model.
基金We acknowledge funding from European Union[CEOP-AEGIS,project FP7-ENV-2007-1 Proposal No.212921]the Ministerio de Economía y Competitividad[EODIX,project AYA2008-0595-C04-01+1 种基金CEOS-Spain,project AYA2011-29334-C02-01]the Universitat de València[grant number PRECOM13-115366].
文摘Remote sensing techniques are a useful tool for continuous observation of the Earth at global scale.However,products derived from remote sensing data require a rigorous validation using in situ data.Moderate Resolution Imaging Spectroradiometer(MODIS)is not really a sounding instrument,but it does have 16 infrared bands(bands 20-36 covering the spectral range from 3μm to 14μm)that allow the retrieval of temperature and moisture profiles as well as total column integrated magnitudes.In this paper we show the results obtained in the evaluation of MOD07 daytime and nighttime products over the Iberian Peninsula during the decade from 2000 to 2010 using nine radiosonde stations.Although MODIS limitations in comparison with other sounding instruments,the validation provided satisfactory results,with bias(MOD07 minus radiosonde)<0.3 cm and a standard deviation of 0.5 cm for the total column water vapor,and bias around 1 K on average with standard deviations between 2 K and 3 K for air temperature at different pressure levels.On average,bias was positive and below 2 K with standard deviations around 5 K for the dew point temperature case.Large errors were found in this case for pressure levels higher than 50 hPa.
基金Supported by National"973"Project No.4(G1998040909#).
文摘This paper describes briefly the sounding capabilities of TOVS/ATOVS onboard the NOAA polar-orbiting meteorological satellites,followed by a more detailed review of the retrieval schemes.The ICI physical retrieval scheme with some adaptations is implemented in our experiment.The analyses of the Chinese regional NWP model are utilized to create a rolling library of initial guess field.Retrieval results validated against both NWP analyses and radiosondes indicate good agreement between ICI retrievals and conventional observations.Preliminary result from the PC-ATOVS Windows display system of NSMC will also be shown.
基金supported by Ministry of Science and Technology of the People’s Republic of China[grant number:2021YFC3000201]National Natural Science Foundation of China[grant number:42071032]Youth Innovation Promotion Association of the Chinese Academy of Sciences[grant number:2020056].
文摘MODIS atmospheric profile products(MOD07_L2 and MYD07_L2)have been widely used for near-surface dew point temperature(T_(d))estimation.However,their accuracy over large scale has seldom been evaluated.In this study,we validated these two products comprehensively against 2153 stations over China's Mainland.MOD07_L2 was suggested by our study because it achieved higher accuracy in either of two frequently-used methods.To be specific,the root-meansquare error(RMSE)achieved by MOD07_L2 and MYD07_L2 was 5.82 and 7.42℃,respectively.On this basis,a recent ground-based correction method was modified to further improve their accuracy.Our focus is to investigate whether this ground-based approach is applicable to large-scale remote sensing applications.The results show that this new method showed great potential for T_(d) estimation independently from ground observations.Through the introduction of MODIS land surface products,the RMSE it achieved for MOD07_L2 and MYD07_L2 was 5.23 and 5.59℃,respectively.Further analysis shows that it was particularly useful in capturing the annual average T_(d) patterns.The R2,RMSE,and bias of annual average daily mean T_(d) estimates were 0.95,1.84℃,and 0.53℃,and those achieved for annual average instantaneous T_(d) estimates were 0.94,2.09℃,and 0.75℃,respectively.