An ultranarrow bandwidth Faraday atomic filter is realized based on cold 87Rb atoms. The atomic filter operates at 780 nm on the 52 S1/2, F = 2 to 52 P3/2, F’= 3 transition with a bandwidth of 7.1(8) MHz, which is ap...An ultranarrow bandwidth Faraday atomic filter is realized based on cold 87Rb atoms. The atomic filter operates at 780 nm on the 52 S1/2, F = 2 to 52 P3/2, F’= 3 transition with a bandwidth of 7.1(8) MHz, which is approaching the natural linewidth of the transition. The peak transmission achieves 2.6(3)% by the multi-pass probe method. This atomic filter based on cold atoms may find potential applications in self-stabilizing lasers in the future.展开更多
We report the experimental demonstration of an ultranarrow bandwidth atomic filter by optically induced polarization rotation in multilevel electromagnetically induced transparency systems in hot Rb vapor. With a coup...We report the experimental demonstration of an ultranarrow bandwidth atomic filter by optically induced polarization rotation in multilevel electromagnetically induced transparency systems in hot Rb vapor. With a coupling intensity of 2.3 W/cm^2, the filter shows a peak transmission of 33.2% and a bandwidth of 10 MHz. By altering the coupling frequency, a broad tuning range of several Doppler linewidths of the D1 line transitions of STRb atoms can be obtained. The presented atomic filter has useful features of ultranarrow bandwidth, and the operating frequency can be tuned resonance with the atomic transition. Such narrowband tunable atomic filter can be used as an efficient noise rejection tool in classical and quantum optical applications.展开更多
A Kalman filter was developed for correction of wing interference in ICP-AES.Modeling wing interference theoretically instead of experimentally, the filter can compensate the shift in wavelength position in scans, and...A Kalman filter was developed for correction of wing interference in ICP-AES.Modeling wing interference theoretically instead of experimentally, the filter can compensate the shift in wavelength position in scans, and therefore reduce the effect of the interference on detection limit.展开更多
基金supported by the National Natural Science Foundation of China (No. 11704361)。
文摘An ultranarrow bandwidth Faraday atomic filter is realized based on cold 87Rb atoms. The atomic filter operates at 780 nm on the 52 S1/2, F = 2 to 52 P3/2, F’= 3 transition with a bandwidth of 7.1(8) MHz, which is approaching the natural linewidth of the transition. The peak transmission achieves 2.6(3)% by the multi-pass probe method. This atomic filter based on cold atoms may find potential applications in self-stabilizing lasers in the future.
基金supported by the National Basic Research Program of China(No.2006CB921203)the National Natural Science Foundation of China(No.11174327)+1 种基金the Foundation of Wuhan National Laboratory for Optoelectronics(No.P080002)the support of the Hundred Talent Program by the Chinese Academy of Sciences
文摘We report the experimental demonstration of an ultranarrow bandwidth atomic filter by optically induced polarization rotation in multilevel electromagnetically induced transparency systems in hot Rb vapor. With a coupling intensity of 2.3 W/cm^2, the filter shows a peak transmission of 33.2% and a bandwidth of 10 MHz. By altering the coupling frequency, a broad tuning range of several Doppler linewidths of the D1 line transitions of STRb atoms can be obtained. The presented atomic filter has useful features of ultranarrow bandwidth, and the operating frequency can be tuned resonance with the atomic transition. Such narrowband tunable atomic filter can be used as an efficient noise rejection tool in classical and quantum optical applications.
文摘A Kalman filter was developed for correction of wing interference in ICP-AES.Modeling wing interference theoretically instead of experimentally, the filter can compensate the shift in wavelength position in scans, and therefore reduce the effect of the interference on detection limit.