[Objective] The aim was to develop a rapid, simple method for determina- tion of arsenic and mercury in soil samples by atomic fluorescence spectrometry. [Method] The method for determination of As and Hg in soil by c...[Objective] The aim was to develop a rapid, simple method for determina- tion of arsenic and mercury in soil samples by atomic fluorescence spectrometry. [Method] The method for determination of As and Hg in soil by combined atomic fluorescence spectrometry and microwave digestion was used. [Result] The concentration curve was linear within the range of 0-80.0μg/L of As and 0-8.0 μg/L of Hg, and the detection limits of As and Hg was 0.036 μg/L and 0.015 μg/L, respectively. The precision for elevenfold determination of As at 40.0 ug/L level and Hg at 4.0μg/L level were 1.1% and 2.2%(RSD), respectively. Recoveries of 103.0%-106.6% for As and 90.0%-95.0% for Hg were obtained for there soil samples. [Conclusion] The proposed method has the advantages of simple operation, high sensitivity, and high efficiency; it was successfully used for determination of As and Hg in soil samples.展开更多
Ion chromatography-ultra violet-hydride generation-Atomic Florescence Spectrometry was applied to detect 5 arsenic species in seafoods. The arsenic species studied include arsenobetaine(As B), arsenite(As(III)), dimet...Ion chromatography-ultra violet-hydride generation-Atomic Florescence Spectrometry was applied to detect 5 arsenic species in seafoods. The arsenic species studied include arsenobetaine(As B), arsenite(As(III)), dimethylarsinic acid(DMA), monomethylarsonic acid(MMA), and arsenate(As(V)), which were extracted from samples using 2% formic acid. Gradient elution using 33 mmol L^(-1) CH_3COONH_4 and 15 mmol L^(-1) Na_2CO_3 with 10 mL CH_3CH_2OH at pH 8.4 allowed the chromatographic separation of all the species on a Hamilton PRP-X100 anion-exchange column in less than 8 min. In this study, an ultrasound extraction method was used to extract arsenic species from seafood. The extraction efficiency was good and the recoveries from spiked samples were in the range of 72.6%–109%; the precision between sample replicates was higher than 3.6% for all determinations. The detection limits were 3.543 μg L^(-1) for As B, 0.4261 μg L^(-1) for As(III), 0.216 μg L^(-1) for DMA, 0.211 μg L^(-1) for MMA, and 0.709 μg L^(-1) for As(V), and the linear coefficients were greater than 0.999. We also developed an application of this method for the determination of arsenic species in bonito, Euphausia superba, and Enteromorpha with satisfactory results. Therefore, it was confirmed that this method was appropriate for the detection of arsenic species in seafood.展开更多
Quantity of trace arsenic in grain and soil was determined by hydride nondispersive atomic fluorescence method.Optimum conditions of measurement were selected in the experiment including the pH of the medium, reductiv...Quantity of trace arsenic in grain and soil was determined by hydride nondispersive atomic fluorescence method.Optimum conditions of measurement were selected in the experiment including the pH of the medium, reductive agent, the concentration and flowing velocity of KBH4, rate of carrier gas and atomized temperature. The reference sample of rice C was determined and the linear relationship of the calibration curve was plotted, indicating that the method was highly precise. In the experiment of recovery rate, the method was quite satisfactory.Based on the determination of hundreds of samples, it is proved that atomic fluorescence method is rapid, sensitive and low in interference. It is very efficient on determination of trace arsenic in soils and grains, especially in grains.展开更多
In this paper, a new MPT(microwave plasma torch) device has been used as a atomizer for atomic fluorescence spectrometry. Spme elements, such as Zn, Cd, Hg, Pb, As, Co, Mg, Cu, Ag, Mn, Fe have been investigated in det...In this paper, a new MPT(microwave plasma torch) device has been used as a atomizer for atomic fluorescence spectrometry. Spme elements, such as Zn, Cd, Hg, Pb, As, Co, Mg, Cu, Ag, Mn, Fe have been investigated in detail.展开更多
A novel analysis approach using atomic fluorescence excited by synchrotron radiation is presented. A system for synchrotron radiation-atomic fluorescence spectrometry is developed, and experimental conditions such as ...A novel analysis approach using atomic fluorescence excited by synchrotron radiation is presented. A system for synchrotron radiation-atomic fluorescence spectrometry is developed, and experimental conditions such as flow rate, analyte acidity, concentration of pre-reducing and hydrogenation system are optimized. The proposed method is successfully applied to get an excitation spectrum of arsenic. Seven of ten primary spectral lines, four of which have never been reported by means of atomic fluorescence spectrometry, agree well with the existing reports. The other three are proposed for the first time. Excitation potentials and possible transitions are investigated. Especially for the prominent line at 234.99 nm, the mechanism of generation is discussed and a model of energy transition processes is proposed.展开更多
The Microwave-Induced Plasma (MIP) has received considerable attention during the past decade since theintroduction of the Becnakker Cavity. It has been commonly used as an atomization cell for atomic emission spectro...The Microwave-Induced Plasma (MIP) has received considerable attention during the past decade since theintroduction of the Becnakker Cavity. It has been commonly used as an atomization cell for atomic emission spectrometry (AES) and atomic absorption spectrometry (AAS), and a great success was achieved for both techniques. More展开更多
Ultrasonic aided slurry sampling hydride generation atomic fluorescence spectrometry (USS-HG-AFS) was developed for the determination of Hg in soil samples from a sewage-irrigated farm. 500 mg grounded soil was susp...Ultrasonic aided slurry sampling hydride generation atomic fluorescence spectrometry (USS-HG-AFS) was developed for the determination of Hg in soil samples from a sewage-irrigated farm. 500 mg grounded soil was suspended in agar solution by an ultrasound water bath before the HG-AFS determination. The results for the reference material of soil (serial number GBW-07411) agreed satisfactorily with the certified values. Results obtained by the developed procedure compared well with those after traditional acid digestion of samples. The detection limit are 6.7ngL-1 for Hg respectively, with average relative standard deviation values of 6.4% for analysis of a series of soil samples of different origin. The recoveries of the anatytes varied in the range from 95 to 107%. This observation has stimulated interest in fast, accurate and sensitive analytical methods for determination of metals in soil.展开更多
In this paper, two different diameter particles (TSP, PM10) were collected by TH-16A four-channels classification air sampler. The samples were treated by HNO3. Analysis of cadmium was carried out by hydride generat...In this paper, two different diameter particles (TSP, PM10) were collected by TH-16A four-channels classification air sampler. The samples were treated by HNO3. Analysis of cadmium was carried out by hydride generation atomic fluorescence spectrometry (HG-AFS) method, and distribution proportions of elements in four phases were calculated. This method was based on the reaction of cadmium with 1.5% (m/v) KBH4 solution and 0.5% KOH(m/v) solution to form the hydride gas in medium of 2% (v/v) HCl. The detection limit for cadmium as low as 0.008μg/L was obtained. The lineally correlation coefficient was 0.99992. The relative standard deviation (n=5, C=1.00μg/L) was 3.26%. The proposed method was applied for the determination of cadmium in atmosphere aerosol samples and the recoveries in the range of 95-102.2% were obtained. This method was simple, rapid, less matrix interference and high sensitivity.展开更多
A new multi-element analysis technique based on laser-excited atomic fluorescence was reviewed. However, the one-wavelength-one-transition constraint was overcome. Numerous elements were induced to fluoresce at a sing...A new multi-element analysis technique based on laser-excited atomic fluorescence was reviewed. However, the one-wavelength-one-transition constraint was overcome. Numerous elements were induced to fluoresce at a single excitation wavelength of 193 nm. This was possible provided that the analytes were imbedded in dense plumes, such as those produced by pulsed laser ablation. The underlying mechanism of the technique was explained and corroborated. Analytical applications to metals, plastics, ceramics and their composites were discribed. Detection limits in the ng/g range and mass limits of atto moles were demonstrated. Several real-world problems, including the analysis of paint coating for trace lead, the non-destructive analysis of potteries and ink, the chemical profiling of electrode plastic interfaces, and the analysis of ingestible lead colloids were discussed.展开更多
A method for the determination of iodine based upon compound H2HgI4, formed between I- and Hg1+ in nitric acid and extracted in methyl isobutyl ketone(MIBK), was developed via atomic fluorescence spectrometry(AFS...A method for the determination of iodine based upon compound H2HgI4, formed between I- and Hg1+ in nitric acid and extracted in methyl isobutyl ketone(MIBK), was developed via atomic fluorescence spectrometry(AFS). After the compound is reduced with potassium borohydrid(KBH4), the resultant mercury vapor was injected into the instrument and iodine was, therefore, indirectly determined. Experimental parameters such as the conditions of extraction reagents, aqueous phase acidity, elemental mercury diffusion temperature in a vial and other factors were investigated and optimized. Under the optimum experimental conditions, this method shows a detection limit of 0.038μg/L iodine and a linear relationship between 0.04-20 p.g/L. The method was applied to determining the iodine content in marine duck eggs, kelps, laver and Ganoderma lucidum spirulina, showing a relative standard deviation(RSD) of 2.15% and the recoveries in the range of 98.1%-102.5%.展开更多
Spectral analysis was a method of identifying substances, determining their chemical composition and calculating their content based on their spectral characteristics. This paper mainly discussed the application of va...Spectral analysis was a method of identifying substances, determining their chemical composition and calculating their content based on their spectral characteristics. This paper mainly discussed the application of various spectroscopic techniques, mainly including atomic absorption spectrometry (AAS) inductively coupled plasma emission spectrometry (ICP-AES) X-ray fluorescence spectroscopy (XRF) atomic fluorescence spectroscopy (AFS) direct reading spectroscopy (OES) glow discharge emission spectroscopy (GD-OSE) laser-induced breakdown spectroscopy (LIBS), in the formulation of non-ferrous metal standards in China. The AAS method was the most widely used single-element microanalysis method among the non-ferrous metal standards. The ICP-AES method was good at significant advantages in the simultaneous detection of multiple elements. The XRF method was increasingly used in the determination of primary and secondary trace elements due to its simple sample preparation and high efficiency. The AFS was mostly detected by single-element trace analysis. OES GD-OES and LIBS were playing an increasingly important role in the new demand area for non-ferrous metals. This paper discussed matrix elimination, sample digestion, sample preparation, instrument categories and other aspects of some standards, and summarized the advantages of spectral analysis and traditional chemical analysis methods. The new methods of future spectroscopic technology had been illustrated in the process of developing non-ferrous metal standards.展开更多
The soil heavy metals(Hg and As)in Duanzhou District of Zhaoqing City were determined by AFS200 T atomic fluorescence spectropho-tometer,and the soil environment in Duanzhou District was evaluated by several evaluatio...The soil heavy metals(Hg and As)in Duanzhou District of Zhaoqing City were determined by AFS200 T atomic fluorescence spectropho-tometer,and the soil environment in Duanzhou District was evaluated by several evaluation methods of soil heavy metal pollution,such as single factor index method,pollution load index method and Nemerow comprehensive pollution index method.Finally,according to the data and conclu-sions,the soil pollution situation in Duanzhou District of Zhaoqing was analyzed.The results will let more people pay attention to the changes of the environment and realize the harm of the environment,and the government can formulate a new plan conducive to the coordinated development of the environment and economy.展开更多
To investigate the correlation between hair selenium (Se) level and gastric cancer. Methods: Atomic fluorescence spectrophotometer(AFS) was used to detect the Se level in hair. Results: The Se concentration in p...To investigate the correlation between hair selenium (Se) level and gastric cancer. Methods: Atomic fluorescence spectrophotometer(AFS) was used to detect the Se level in hair. Results: The Se concentration in patients with gastric cancer ranged from 0.25 to 2.33 μg/g(0.825 ± 0.51 μg/g), and that of health individuals ranged from 4.23 to 9.21 μg/g(6.29± 1.68 μg/g). The results showed that the Se concentration in the patients' hair was significantly lower than that in controls (P 〈 0.01). Conclusion: There is a correlation between hair concentration and gastric cancer.展开更多
A fluorescence detection scheme is applied to image an atomic beam. Using two laser diodes as the sources of detection light and pumping light respectively, the fluorescence image of the atomic beam is then observed b...A fluorescence detection scheme is applied to image an atomic beam. Using two laser diodes as the sources of detection light and pumping light respectively, the fluorescence image of the atomic beam is then observed by a commercial CCD-camera, which is corresponding to the atomic state and velocity distribution. The detection scheme has a great utilization in the experiments of cold atoms and atomic optics.展开更多
A novel organoselenium compound,WB(1,2-[bis(1,2-benzisoselenazolone-3(2H)-ketone)]pentane) has indicated anti-tumor activity.Its pharmacokinetic data has never been determined.By using the H22 tumor bearing mous...A novel organoselenium compound,WB(1,2-[bis(1,2-benzisoselenazolone-3(2H)-ketone)]pentane) has indicated anti-tumor activity.Its pharmacokinetic data has never been determined.By using the H22 tumor bearing mouse model,the tissue distribution of WB after single and four consecutive doses(both were 120 mg/kg/d) was explored.The selenium content of the tissues was used as an indicator of WB absorption,distribution and metabolism.The selenium in the heart,liver, spleen,kidneys,lungs,stomach,pancreas,brain,colon,intestine,testes,plasma,and tumor were determined by generation atomic fluorescence spectrometry(AFS).With single or multiple oral administration of WB,the selenium content significantly increased in the liver,stomach,colon,and intestine.The selenium content in the spleen,lungs,pancreas,testes,plasma and tumor also increased compared with the controls;but no significant changes were found in the brain and kidney.WB and its metabolites distributed predominantly in the colon,liver,stomach and intestine,which resulted in a significant increase in the selenium content in both groups.There was no observed significant accumulation of WB in the vital organs.展开更多
Flue gas from coal combustion contains significant amounts of volatile selenium (Se). The capture of Se in the flue gas desulfurization (FGD) scrubber unit has resulted in a generation of metal-laden residues. It ...Flue gas from coal combustion contains significant amounts of volatile selenium (Se). The capture of Se in the flue gas desulfurization (FGD) scrubber unit has resulted in a generation of metal-laden residues. It is important to determine Se speciation to understand the environmental impact of its disposal. A simple method has been developed for selective inorganic Se(IV), Se(VI) and organic Se determination in the liquid-phase FGD residues by hydride generation atomic fluorescence spectrometry (AFS). It has been determined that Se(IV), Se(VI) and organic Se can be accurately determined with detection limits (DL) of 0.05, 0.06 and 0.06 μg/L, respectively. The accuracy of the proposed method was evaluated by analyzing the certified reference material, NIST CRM 1632c, and also by analyzing spiked tap-water samples. Analysis indicates that the concentration of Se is high in FGD liquid residues and primarily exists in a reduced state as selenite (Se(IV)). The toxicity of Se(IV) is the strongest of all Se species. Flue gas desulfurization residues pose a serious environmental risk.展开更多
We prepare oligothymonucleic acid (OTA) functionalized polyethylene (PE) film and evaluate its selective removal ability of mercury ions at ultra-low levels in aqueous solution. The selective binding of OTA with mercu...We prepare oligothymonucleic acid (OTA) functionalized polyethylene (PE) film and evaluate its selective removal ability of mercury ions at ultra-low levels in aqueous solution. The selective binding of OTA with mercury ions is confirmed by fluorescence in situ hybridization (FISH). The quantitative results via cold-vapor atomic fluorescence spectrometry (CVAFS) indicate that OTA-functionalized PE film is able to remove mercury ions at the sub-ppb level selectively from aqueous solution, even with the coexistence of other metal ions at concentrations 250-fold or higher than that of mercury.展开更多
The capability to image, as well as control and manipulate single molecules such as nucleic acids(DNA or RNA) can greatly enrich our knowledge of the roles of individual biomolecules in cellular processes and their be...The capability to image, as well as control and manipulate single molecules such as nucleic acids(DNA or RNA) can greatly enrich our knowledge of the roles of individual biomolecules in cellular processes and their behavior in native environments. Here we summarize the recent advances of single nucleic acid imaging based on optical observation and force manipulation. We start by discussing the superiority of single molecule image, the central roles nucleic acids play in biosystems, and the significance of single molecule image towards nucleic acids. We then list a series of representative examples in brief to illustrate how nucleic acid of various morphologies has been imaged from different aspects, and what can be learned from such characterizations. Finally,concluding remarks on parts of which should be improved and outlook are outlined.展开更多
基金Supported by Key Fund of Guangxi Academy of Agricultural Sciences(2013YZ07)~~
文摘[Objective] The aim was to develop a rapid, simple method for determina- tion of arsenic and mercury in soil samples by atomic fluorescence spectrometry. [Method] The method for determination of As and Hg in soil by combined atomic fluorescence spectrometry and microwave digestion was used. [Result] The concentration curve was linear within the range of 0-80.0μg/L of As and 0-8.0 μg/L of Hg, and the detection limits of As and Hg was 0.036 μg/L and 0.015 μg/L, respectively. The precision for elevenfold determination of As at 40.0 ug/L level and Hg at 4.0μg/L level were 1.1% and 2.2%(RSD), respectively. Recoveries of 103.0%-106.6% for As and 90.0%-95.0% for Hg were obtained for there soil samples. [Conclusion] The proposed method has the advantages of simple operation, high sensitivity, and high efficiency; it was successfully used for determination of As and Hg in soil samples.
基金funded by the National Major ScientificInstrument and Equipment Development Project of China (No.2012YQ090229)
文摘Ion chromatography-ultra violet-hydride generation-Atomic Florescence Spectrometry was applied to detect 5 arsenic species in seafoods. The arsenic species studied include arsenobetaine(As B), arsenite(As(III)), dimethylarsinic acid(DMA), monomethylarsonic acid(MMA), and arsenate(As(V)), which were extracted from samples using 2% formic acid. Gradient elution using 33 mmol L^(-1) CH_3COONH_4 and 15 mmol L^(-1) Na_2CO_3 with 10 mL CH_3CH_2OH at pH 8.4 allowed the chromatographic separation of all the species on a Hamilton PRP-X100 anion-exchange column in less than 8 min. In this study, an ultrasound extraction method was used to extract arsenic species from seafood. The extraction efficiency was good and the recoveries from spiked samples were in the range of 72.6%–109%; the precision between sample replicates was higher than 3.6% for all determinations. The detection limits were 3.543 μg L^(-1) for As B, 0.4261 μg L^(-1) for As(III), 0.216 μg L^(-1) for DMA, 0.211 μg L^(-1) for MMA, and 0.709 μg L^(-1) for As(V), and the linear coefficients were greater than 0.999. We also developed an application of this method for the determination of arsenic species in bonito, Euphausia superba, and Enteromorpha with satisfactory results. Therefore, it was confirmed that this method was appropriate for the detection of arsenic species in seafood.
文摘Quantity of trace arsenic in grain and soil was determined by hydride nondispersive atomic fluorescence method.Optimum conditions of measurement were selected in the experiment including the pH of the medium, reductive agent, the concentration and flowing velocity of KBH4, rate of carrier gas and atomized temperature. The reference sample of rice C was determined and the linear relationship of the calibration curve was plotted, indicating that the method was highly precise. In the experiment of recovery rate, the method was quite satisfactory.Based on the determination of hundreds of samples, it is proved that atomic fluorescence method is rapid, sensitive and low in interference. It is very efficient on determination of trace arsenic in soils and grains, especially in grains.
文摘In this paper, a new MPT(microwave plasma torch) device has been used as a atomizer for atomic fluorescence spectrometry. Spme elements, such as Zn, Cd, Hg, Pb, As, Co, Mg, Cu, Ag, Mn, Fe have been investigated in detail.
基金This work wass supported by the National Natural Science Foundation of China (No.20675074 and No.10575099).
文摘A novel analysis approach using atomic fluorescence excited by synchrotron radiation is presented. A system for synchrotron radiation-atomic fluorescence spectrometry is developed, and experimental conditions such as flow rate, analyte acidity, concentration of pre-reducing and hydrogenation system are optimized. The proposed method is successfully applied to get an excitation spectrum of arsenic. Seven of ten primary spectral lines, four of which have never been reported by means of atomic fluorescence spectrometry, agree well with the existing reports. The other three are proposed for the first time. Excitation potentials and possible transitions are investigated. Especially for the prominent line at 234.99 nm, the mechanism of generation is discussed and a model of energy transition processes is proposed.
文摘The Microwave-Induced Plasma (MIP) has received considerable attention during the past decade since theintroduction of the Becnakker Cavity. It has been commonly used as an atomization cell for atomic emission spectrometry (AES) and atomic absorption spectrometry (AAS), and a great success was achieved for both techniques. More
文摘Ultrasonic aided slurry sampling hydride generation atomic fluorescence spectrometry (USS-HG-AFS) was developed for the determination of Hg in soil samples from a sewage-irrigated farm. 500 mg grounded soil was suspended in agar solution by an ultrasound water bath before the HG-AFS determination. The results for the reference material of soil (serial number GBW-07411) agreed satisfactorily with the certified values. Results obtained by the developed procedure compared well with those after traditional acid digestion of samples. The detection limit are 6.7ngL-1 for Hg respectively, with average relative standard deviation values of 6.4% for analysis of a series of soil samples of different origin. The recoveries of the anatytes varied in the range from 95 to 107%. This observation has stimulated interest in fast, accurate and sensitive analytical methods for determination of metals in soil.
文摘In this paper, two different diameter particles (TSP, PM10) were collected by TH-16A four-channels classification air sampler. The samples were treated by HNO3. Analysis of cadmium was carried out by hydride generation atomic fluorescence spectrometry (HG-AFS) method, and distribution proportions of elements in four phases were calculated. This method was based on the reaction of cadmium with 1.5% (m/v) KBH4 solution and 0.5% KOH(m/v) solution to form the hydride gas in medium of 2% (v/v) HCl. The detection limit for cadmium as low as 0.008μg/L was obtained. The lineally correlation coefficient was 0.99992. The relative standard deviation (n=5, C=1.00μg/L) was 3.26%. The proposed method was applied for the determination of cadmium in atmosphere aerosol samples and the recoveries in the range of 95-102.2% were obtained. This method was simple, rapid, less matrix interference and high sensitivity.
文摘A new multi-element analysis technique based on laser-excited atomic fluorescence was reviewed. However, the one-wavelength-one-transition constraint was overcome. Numerous elements were induced to fluoresce at a single excitation wavelength of 193 nm. This was possible provided that the analytes were imbedded in dense plumes, such as those produced by pulsed laser ablation. The underlying mechanism of the technique was explained and corroborated. Analytical applications to metals, plastics, ceramics and their composites were discribed. Detection limits in the ng/g range and mass limits of atto moles were demonstrated. Several real-world problems, including the analysis of paint coating for trace lead, the non-destructive analysis of potteries and ink, the chemical profiling of electrode plastic interfaces, and the analysis of ingestible lead colloids were discussed.
文摘A method for the determination of iodine based upon compound H2HgI4, formed between I- and Hg1+ in nitric acid and extracted in methyl isobutyl ketone(MIBK), was developed via atomic fluorescence spectrometry(AFS). After the compound is reduced with potassium borohydrid(KBH4), the resultant mercury vapor was injected into the instrument and iodine was, therefore, indirectly determined. Experimental parameters such as the conditions of extraction reagents, aqueous phase acidity, elemental mercury diffusion temperature in a vial and other factors were investigated and optimized. Under the optimum experimental conditions, this method shows a detection limit of 0.038μg/L iodine and a linear relationship between 0.04-20 p.g/L. The method was applied to determining the iodine content in marine duck eggs, kelps, laver and Ganoderma lucidum spirulina, showing a relative standard deviation(RSD) of 2.15% and the recoveries in the range of 98.1%-102.5%.
文摘Spectral analysis was a method of identifying substances, determining their chemical composition and calculating their content based on their spectral characteristics. This paper mainly discussed the application of various spectroscopic techniques, mainly including atomic absorption spectrometry (AAS) inductively coupled plasma emission spectrometry (ICP-AES) X-ray fluorescence spectroscopy (XRF) atomic fluorescence spectroscopy (AFS) direct reading spectroscopy (OES) glow discharge emission spectroscopy (GD-OSE) laser-induced breakdown spectroscopy (LIBS), in the formulation of non-ferrous metal standards in China. The AAS method was the most widely used single-element microanalysis method among the non-ferrous metal standards. The ICP-AES method was good at significant advantages in the simultaneous detection of multiple elements. The XRF method was increasingly used in the determination of primary and secondary trace elements due to its simple sample preparation and high efficiency. The AFS was mostly detected by single-element trace analysis. OES GD-OES and LIBS were playing an increasingly important role in the new demand area for non-ferrous metals. This paper discussed matrix elimination, sample digestion, sample preparation, instrument categories and other aspects of some standards, and summarized the advantages of spectral analysis and traditional chemical analysis methods. The new methods of future spectroscopic technology had been illustrated in the process of developing non-ferrous metal standards.
基金Supported by Special Projects in Key Fields of Universities and Colleges in Guangdong Province(2021ZDZX4023)Special Fund Project for Enterprise Science and Technology Commissioners of Guangdong Province in 2020(GDKTP2020059100)+1 种基金Quality Engineering and Educational Reform Project of Zhaoqing University(zlgc 201931)Guangdong Provincial Key Laboratory of Environmental Health and Land Resource(2020B121201014)
文摘The soil heavy metals(Hg and As)in Duanzhou District of Zhaoqing City were determined by AFS200 T atomic fluorescence spectropho-tometer,and the soil environment in Duanzhou District was evaluated by several evaluation methods of soil heavy metal pollution,such as single factor index method,pollution load index method and Nemerow comprehensive pollution index method.Finally,according to the data and conclu-sions,the soil pollution situation in Duanzhou District of Zhaoqing was analyzed.The results will let more people pay attention to the changes of the environment and realize the harm of the environment,and the government can formulate a new plan conducive to the coordinated development of the environment and economy.
文摘To investigate the correlation between hair selenium (Se) level and gastric cancer. Methods: Atomic fluorescence spectrophotometer(AFS) was used to detect the Se level in hair. Results: The Se concentration in patients with gastric cancer ranged from 0.25 to 2.33 μg/g(0.825 ± 0.51 μg/g), and that of health individuals ranged from 4.23 to 9.21 μg/g(6.29± 1.68 μg/g). The results showed that the Se concentration in the patients' hair was significantly lower than that in controls (P 〈 0.01). Conclusion: There is a correlation between hair concentration and gastric cancer.
文摘A fluorescence detection scheme is applied to image an atomic beam. Using two laser diodes as the sources of detection light and pumping light respectively, the fluorescence image of the atomic beam is then observed by a commercial CCD-camera, which is corresponding to the atomic state and velocity distribution. The detection scheme has a great utilization in the experiments of cold atoms and atomic optics.
基金National Major Projects on Drug Research and Technology(Grant No.2009ZX09103-032)
文摘A novel organoselenium compound,WB(1,2-[bis(1,2-benzisoselenazolone-3(2H)-ketone)]pentane) has indicated anti-tumor activity.Its pharmacokinetic data has never been determined.By using the H22 tumor bearing mouse model,the tissue distribution of WB after single and four consecutive doses(both were 120 mg/kg/d) was explored.The selenium content of the tissues was used as an indicator of WB absorption,distribution and metabolism.The selenium in the heart,liver, spleen,kidneys,lungs,stomach,pancreas,brain,colon,intestine,testes,plasma,and tumor were determined by generation atomic fluorescence spectrometry(AFS).With single or multiple oral administration of WB,the selenium content significantly increased in the liver,stomach,colon,and intestine.The selenium content in the spleen,lungs,pancreas,testes,plasma and tumor also increased compared with the controls;but no significant changes were found in the brain and kidney.WB and its metabolites distributed predominantly in the colon,liver,stomach and intestine,which resulted in a significant increase in the selenium content in both groups.There was no observed significant accumulation of WB in the vital organs.
基金supported by the National Natural Science Foundation of China (No.90410018)the Shanxi Nature Science Foundation (No.20051017)+1 种基金the Shanxi Returned Scholar Research Project (No.2005-21)the Programfor Changjiang Scholars and Innovative Research Team at University in MOE,China (No.IRT0517)
文摘Flue gas from coal combustion contains significant amounts of volatile selenium (Se). The capture of Se in the flue gas desulfurization (FGD) scrubber unit has resulted in a generation of metal-laden residues. It is important to determine Se speciation to understand the environmental impact of its disposal. A simple method has been developed for selective inorganic Se(IV), Se(VI) and organic Se determination in the liquid-phase FGD residues by hydride generation atomic fluorescence spectrometry (AFS). It has been determined that Se(IV), Se(VI) and organic Se can be accurately determined with detection limits (DL) of 0.05, 0.06 and 0.06 μg/L, respectively. The accuracy of the proposed method was evaluated by analyzing the certified reference material, NIST CRM 1632c, and also by analyzing spiked tap-water samples. Analysis indicates that the concentration of Se is high in FGD liquid residues and primarily exists in a reduced state as selenite (Se(IV)). The toxicity of Se(IV) is the strongest of all Se species. Flue gas desulfurization residues pose a serious environmental risk.
基金supported by National Natural Science Foundation of China(11175234, 11105210)the Knowledge Innovation Program of the Chinese Academy of Sciences (XDA02040300, KJCX2-YW-N49)Shanghai Municipal Commission for Science and Technology (10ZR1436700,11ZR1445400)
文摘We prepare oligothymonucleic acid (OTA) functionalized polyethylene (PE) film and evaluate its selective removal ability of mercury ions at ultra-low levels in aqueous solution. The selective binding of OTA with mercury ions is confirmed by fluorescence in situ hybridization (FISH). The quantitative results via cold-vapor atomic fluorescence spectrometry (CVAFS) indicate that OTA-functionalized PE film is able to remove mercury ions at the sub-ppb level selectively from aqueous solution, even with the coexistence of other metal ions at concentrations 250-fold or higher than that of mercury.
基金supported by the National Natural Science Foundation of China (21525523, 21574048, 21375042, 21405054)the National Basic Research Program of China (2015CB932600, 2013CB933000)+1 种基金the Special Fund for Strategic New Industry Development of Shenzhen, China (JCYJ20150616144425376)1000 Young Talent (to Fan Xia)
文摘The capability to image, as well as control and manipulate single molecules such as nucleic acids(DNA or RNA) can greatly enrich our knowledge of the roles of individual biomolecules in cellular processes and their behavior in native environments. Here we summarize the recent advances of single nucleic acid imaging based on optical observation and force manipulation. We start by discussing the superiority of single molecule image, the central roles nucleic acids play in biosystems, and the significance of single molecule image towards nucleic acids. We then list a series of representative examples in brief to illustrate how nucleic acid of various morphologies has been imaged from different aspects, and what can be learned from such characterizations. Finally,concluding remarks on parts of which should be improved and outlook are outlined.