The electrochemical behaviours of titanium alloy Ti-10V-2Fe-3Al after electropolishing in a self-developed electrolyte in comparison with conventional grinding were studied by electrochemical impedance spectroscopy (...The electrochemical behaviours of titanium alloy Ti-10V-2Fe-3Al after electropolishing in a self-developed electrolyte in comparison with conventional grinding were studied by electrochemical impedance spectroscopy (EIS).Optical microscopy (OM),scanning electron microscopy (SEM),atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) were used to evaluate the surface characteristics of the alloy.It was found from the EIS experiments that the polarization resistance (Rp) was increased,the double layer capacitance (Qc) was decreased and the electrochemical impedance of the alloy was enhanced by electropolishing.The electropolished surface was flat,smooth and bright and its roughness was 3.310 nm.To underline the advantage of electropolishing process against grinding to provide the anodic oxidation process with a higher quality substrate,the ground and electropolished titanium alloys were anodized in parallel under the same conditions.The corrosion behaviours of the two kinds of anodized titanium alloys were compared.It was revealed that electropolishing generated a high quality substrate and improved the corrosion resistance of anodic oxide film formed on titanium alloy Ti-10V-2Fe-3Al.Furthermore,the mechanism of electropolishing improving the corrosion resistance of the anodic oxide film was proposed.展开更多
A diamond-like carbon(DLC) film was deposited on YT14 substrate using magnetron sputtering(MS). The surface morphologies, roughness and bonding spectra of obtained film were characterized using scanning electron m...A diamond-like carbon(DLC) film was deposited on YT14 substrate using magnetron sputtering(MS). The surface morphologies, roughness and bonding spectra of obtained film were characterized using scanning electron microscopy(SEM), atomic force microscopy(AFM), and X-ray photoelectron spectroscopy(XPS), respectively, and its mechanical property and bonding strength were measured using a nanoindentation and scratch tester, respectively. The results show that the C-enriched DLC film exhibits a denser microstructure and smoother surface with lower surface roughness of 21.8 nm. The ratio of C sp2 at 284.4 e V that corresponds to the diamond(111) and the C sp3 at 285.3 e V that corresponds to the diamond(220) plane for the as-received film is 0.36: 0.64, showing that the C sp3 has the high content. The hardness and Young's modulus of DLC film by nanoindentation are 8.534 41 and 142.158 1 GPa, respectively, and the corresponding bonding strength is 74.55 N by scratch test.展开更多
基金Funded by the National Natural Science Foundation of China(No.51001007)
文摘The electrochemical behaviours of titanium alloy Ti-10V-2Fe-3Al after electropolishing in a self-developed electrolyte in comparison with conventional grinding were studied by electrochemical impedance spectroscopy (EIS).Optical microscopy (OM),scanning electron microscopy (SEM),atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) were used to evaluate the surface characteristics of the alloy.It was found from the EIS experiments that the polarization resistance (Rp) was increased,the double layer capacitance (Qc) was decreased and the electrochemical impedance of the alloy was enhanced by electropolishing.The electropolished surface was flat,smooth and bright and its roughness was 3.310 nm.To underline the advantage of electropolishing process against grinding to provide the anodic oxidation process with a higher quality substrate,the ground and electropolished titanium alloys were anodized in parallel under the same conditions.The corrosion behaviours of the two kinds of anodized titanium alloys were compared.It was revealed that electropolishing generated a high quality substrate and improved the corrosion resistance of anodic oxide film formed on titanium alloy Ti-10V-2Fe-3Al.Furthermore,the mechanism of electropolishing improving the corrosion resistance of the anodic oxide film was proposed.
基金Funded by the Jiangsu Province Science and Technology Support Program(Industry)(No.BE2014818)
文摘A diamond-like carbon(DLC) film was deposited on YT14 substrate using magnetron sputtering(MS). The surface morphologies, roughness and bonding spectra of obtained film were characterized using scanning electron microscopy(SEM), atomic force microscopy(AFM), and X-ray photoelectron spectroscopy(XPS), respectively, and its mechanical property and bonding strength were measured using a nanoindentation and scratch tester, respectively. The results show that the C-enriched DLC film exhibits a denser microstructure and smoother surface with lower surface roughness of 21.8 nm. The ratio of C sp2 at 284.4 e V that corresponds to the diamond(111) and the C sp3 at 285.3 e V that corresponds to the diamond(220) plane for the as-received film is 0.36: 0.64, showing that the C sp3 has the high content. The hardness and Young's modulus of DLC film by nanoindentation are 8.534 41 and 142.158 1 GPa, respectively, and the corresponding bonding strength is 74.55 N by scratch test.