Direct observation is arguably the preferred way to investigate the interactions between two molecular complexes. With the development of high speed atomic force microscopy (AFM), it is becoming possible to observe ...Direct observation is arguably the preferred way to investigate the interactions between two molecular complexes. With the development of high speed atomic force microscopy (AFM), it is becoming possible to observe directly DNA-protein interactions with relevant spatial and temporal resolutions. These interactions are of central importance to biology, bionanotechnology, and functional biologically inspired materials. As in all microscopy studies, sample preparation plays a central role in AFM observation and minimal perturbation of the sample is desired. Here, we demonstrate the ability to tune the interactions between DNA molecules and the surface to create an association strong enough to enable high-resolution AFM imaging while also providing sufficient translational freedom to allow the relevant protein-DNA interactions to take place. Furthermore, we describe a quantitative method for measuring DNA mobility, while also determining the individual forces contributing to DNA movement. We found that for a weak surface association, a significant contribution to the movement arises from the interaction of the AFM tip with the DNA. In combination, these methods enable the tuning of the surface translational freedom of DNA molecules to allow the direct study of a wide range of nucleo-protein interactions by high speed atomic force microscopy.展开更多
Focal adhesions play an important role in cell spreading,migration,and overall mechanical integrity.The relationship of cell structural and mechanical properties was investigated in the context of focal adhesion proce...Focal adhesions play an important role in cell spreading,migration,and overall mechanical integrity.The relationship of cell structural and mechanical properties was investigated in the context of focal adhesion processes.Combined atomic force microscopy(AFM) and laser scanning confocal microscopy(LSCM) was utilized to measure single cell mechanics,in correlation with cellular morphology and membrane structures at a nanometer scale.Characteristic stages of focal adhesion were verified via confocal fluorescent studies,which confirmed three representative F-actin assemblies,actin dot,filaments network,and long and aligned fibrous bundles at cytoskeleton.Force-deformation profiles of living cells were measured at the single cell level,and displayed as a function of height deformation,relative height deformation and relative volume deformation.As focal adhesion progresses,single cell compression profiles indicate that both membrane and cytoskeleton stiffen,while spreading increases especially from focal complex to focal adhesion.Correspondingly,AFM imaging reveals morphological geometries of spherical cap,spreading with polygon boundaries,and elongated or polarized spreading.Membrane features are dominated by protrusions of 41-207 nm tall,short rods with 1-6 μm in length and 10.2-80.0 nm in height,and long fibrous features of 31-246 nm tall,respectively.The protrusion is attributed to local membrane folding,and the rod and fibrous features are consistent with bilayer decorating over the F-actin assemblies.Taken collectively,the reassembly of F-actin during focal adhesion formation is most likely responsible for the changes in cellular mechanics,spreading morphology,and membrane structural features.展开更多
In this article, a detailed analysis of the wet- etching technique for AIGaN/GaN heterostructure using dry thermal oxidation followed by a wet alkali etching was performed. The experimental results show that the oxida...In this article, a detailed analysis of the wet- etching technique for AIGaN/GaN heterostructure using dry thermal oxidation followed by a wet alkali etching was performed. The experimental results show that the oxida- tion plays a key role in the wet-etching method and the etching depth is mainly determined by the oxidation tem- perature and time. The correlation of etching roughness with oxidation time and temperature was investigated. It is found that there exists a critical oxidation temperature in the oxidation process. Finally, a physical explanation of the oxidation procedure for A1GaN layer was given.展开更多
文摘Direct observation is arguably the preferred way to investigate the interactions between two molecular complexes. With the development of high speed atomic force microscopy (AFM), it is becoming possible to observe directly DNA-protein interactions with relevant spatial and temporal resolutions. These interactions are of central importance to biology, bionanotechnology, and functional biologically inspired materials. As in all microscopy studies, sample preparation plays a central role in AFM observation and minimal perturbation of the sample is desired. Here, we demonstrate the ability to tune the interactions between DNA molecules and the surface to create an association strong enough to enable high-resolution AFM imaging while also providing sufficient translational freedom to allow the relevant protein-DNA interactions to take place. Furthermore, we describe a quantitative method for measuring DNA mobility, while also determining the individual forces contributing to DNA movement. We found that for a weak surface association, a significant contribution to the movement arises from the interaction of the AFM tip with the DNA. In combination, these methods enable the tuning of the surface translational freedom of DNA molecules to allow the direct study of a wide range of nucleo-protein interactions by high speed atomic force microscopy.
基金initiated by a UCD Alzheimer's Disease Center (ADC) pilotgranta CRCC (Cancer Research Coordination Committee) Research Grantthe support of W. M. Keck Foundation
文摘Focal adhesions play an important role in cell spreading,migration,and overall mechanical integrity.The relationship of cell structural and mechanical properties was investigated in the context of focal adhesion processes.Combined atomic force microscopy(AFM) and laser scanning confocal microscopy(LSCM) was utilized to measure single cell mechanics,in correlation with cellular morphology and membrane structures at a nanometer scale.Characteristic stages of focal adhesion were verified via confocal fluorescent studies,which confirmed three representative F-actin assemblies,actin dot,filaments network,and long and aligned fibrous bundles at cytoskeleton.Force-deformation profiles of living cells were measured at the single cell level,and displayed as a function of height deformation,relative height deformation and relative volume deformation.As focal adhesion progresses,single cell compression profiles indicate that both membrane and cytoskeleton stiffen,while spreading increases especially from focal complex to focal adhesion.Correspondingly,AFM imaging reveals morphological geometries of spherical cap,spreading with polygon boundaries,and elongated or polarized spreading.Membrane features are dominated by protrusions of 41-207 nm tall,short rods with 1-6 μm in length and 10.2-80.0 nm in height,and long fibrous features of 31-246 nm tall,respectively.The protrusion is attributed to local membrane folding,and the rod and fibrous features are consistent with bilayer decorating over the F-actin assemblies.Taken collectively,the reassembly of F-actin during focal adhesion formation is most likely responsible for the changes in cellular mechanics,spreading morphology,and membrane structural features.
基金financially supported by the National Natural Science Foundation of China (Nos. 60406004, 60890193, and 60736033)the National Key Micrometer/Nanometer Processing Laboratory
文摘In this article, a detailed analysis of the wet- etching technique for AIGaN/GaN heterostructure using dry thermal oxidation followed by a wet alkali etching was performed. The experimental results show that the oxida- tion plays a key role in the wet-etching method and the etching depth is mainly determined by the oxidation tem- perature and time. The correlation of etching roughness with oxidation time and temperature was investigated. It is found that there exists a critical oxidation temperature in the oxidation process. Finally, a physical explanation of the oxidation procedure for A1GaN layer was given.