Lithium-rich oxide compounds have been recognized as promising cathode materials for high performance Li-ion batteries,owing to their high specific capacity.However,it remains a great challenge to achieve the fully re...Lithium-rich oxide compounds have been recognized as promising cathode materials for high performance Li-ion batteries,owing to their high specific capacity.However,it remains a great challenge to achieve the fully reversible anionic redox reactions to realize high capacity,high stability,and low voltage hysteresis for lithiumrich cathode materials.Therefore,it is critically important to comprehensively understand and control the anionic redox chemistry of lithium-rich cathode materials,including atomic structure design,and nano-scale materials engineering technologies.Herein,we summarize the recent research progress of lithium-rich cathode materials with a focus on redox chemistry.Particularly,we highlight the oxygen-based redox reactions in lithium-rich metal oxides,with critical views of designing next generation oxygen redox lithium cathode materials.Furthermore,we purposed the most promising strategies for improving the performances of lithium-rich cathode materials with a technology-spectrum from the atomic scale to nano-scale.展开更多
The research progresses on the investigations of atomic structure and collision dynamics with highly charged ions based on the heavy ion storage rings and electron ion beam traps in recent 20 years are reviewed.The st...The research progresses on the investigations of atomic structure and collision dynamics with highly charged ions based on the heavy ion storage rings and electron ion beam traps in recent 20 years are reviewed.The structure part covers test of quantum electrodynamics and electron correlation in strong Coulomb field studied through dielectronic recombi-nation spectroscopy and VUV/x-ray spectroscopy.The collision dynamics part includes charge exchange dynamics in ion-atom collisions mainly in Bohr velocity region,ion-induced fragmentation mechanisms of molecules,hydrogen-bound and van de Waals bound clusters,interference,and phase information observed in ion-atom/molecule collisions.With this achievements,two aspects of theoretical studies related to low energy and relativistic energy collisions are presented.The applications of data relevant to key atomic processes like dielectronic recombination and charge exchanges involving highly charged ions are discussed.At the end of this review,some future prospects of research related to highly charged ions are proposed.展开更多
The atomic structure and transition properties of H-like Al embedded in hot and dense plasmas are investigated using modified GRASP2 K code. The plasma screening effect on the nucleus is described using the self-consi...The atomic structure and transition properties of H-like Al embedded in hot and dense plasmas are investigated using modified GRASP2 K code. The plasma screening effect on the nucleus is described using the self-consistent field ion sphere model. The effective nuclear potential decreases much more quickly with increasing average free electron density,but increases slightly with increasing electron temperature. The variations of the transition energies, transition probabilities,and oscillator strengths with the free electron density and electron temperature are the same as that of the effective nuclear potential. The results reported in this work agree well with other available theoretical results and are useful for plasma diagnostics.展开更多
The results of molecular dynamics calculations on the interfacial energies and atomic structures of Ag/Ni and Cu/Ni interfaces are presented. Calculation on Ag/Ni interfaces with low-index planes shows that those cont...The results of molecular dynamics calculations on the interfacial energies and atomic structures of Ag/Ni and Cu/Ni interfaces are presented. Calculation on Ag/Ni interfaces with low-index planes shows that those containing the (111) plane have the lowest energies, which is in agreement with the experiments. Comparing surface energy with interfacial energy, it is found the order of the interfacial energies of Ag/Ni and Cu/Ni containing the planes fall in the same order as solid-vapor surface energies of Ag, Cu and Ni. In this MD simulation, the relaxed atomic structure and dislocation network of (110)_Ag||(110)Ni interface are coincident to HREM observations.展开更多
The detailed atomic structure of quasicrystals has been an open problem for decades. Here we present a quasilattiee-conserved optimization method (quasi-OPT), under particular quasiperiodic boundary conditions. As t...The detailed atomic structure of quasicrystals has been an open problem for decades. Here we present a quasilattiee-conserved optimization method (quasi-OPT), under particular quasiperiodic boundary conditions. As the atomic coordinates are described by basic cells and quasilattices, we are able to maintain the self-similarity characteristics of qusicrystals with the atomic structure of the boundary region updated timely following the relaxing region. Exemplified with the study of decagonal Al-Co-Ni (d-Al-Co-Ni), we propose a more stable atomic structure model based on Penrose quasilattice and our quasi-OPT simulations. In particular, rectangle-triangle ruIes are suggested for the local atomic structures of d-Al-Co-Ni quasicrystals.展开更多
Nanometer-sized metal clusters were prepared inside single crystalline MgO films by vacuum co-deposition of metals and MgO. The atomic structure was studied by high-resolution electron microscopy (HREM) and nm-area el...Nanometer-sized metal clusters were prepared inside single crystalline MgO films by vacuum co-deposition of metals and MgO. The atomic structure was studied by high-resolution electron microscopy (HREM) and nm-area electron diffraction. The size of the clusters is ranging from 1 nm to 3 nm without those larger than 5 nm, and most of them have definite epitaxial orientations with the MgO matrix films. The character of the composite films is very much useful for the studies of various kinds of physical properties with anisotroPy. The physical properties such as electric transport, magnetic, optical absorption, sintering and catalytic ones were thus measured on the same samples analyzed by HREM by using high sensitivity apparatus with interest of clarifying the retationship between the atomic structure and physical properties展开更多
“Hydrogen in metallic glasses”has become a popular topic for material scientists,yet few studies focus on the atomic⁃scale details.Herein,by utilizing molecular dynamic simulations,the changes on the atomic structur...“Hydrogen in metallic glasses”has become a popular topic for material scientists,yet few studies focus on the atomic⁃scale details.Herein,by utilizing molecular dynamic simulations,the changes on the atomic structure of Cu50Zr50 metallic glasses after melt hydrogenation were systematically analyzed,with the aim of understanding the differences of mechanical behavior between these amorphous alloys.The simulated analyses indicate that the hydrogenated samples become more compact than the H⁃free one,but the fraction of the dominant coordination polyhedra with higher degree of local fivefold symmetry significantly decreases accompanied by the addition of H atoms.Accordingly,melt hydrogenation can induce much more local“soft spots”in metallic glasses to alleviate the degree of strain localization during deformation,i.e.,it has a positive influence on the deformability of glassy alloys in agreement with experimental results.展开更多
Doping foreign metal atoms into the substrate of transition metal dichalcogenides(TMDs)enables the formation of diverse atomic structure configurations,including isolated atoms,chains,and clusters.Therefore,it is very...Doping foreign metal atoms into the substrate of transition metal dichalcogenides(TMDs)enables the formation of diverse atomic structure configurations,including isolated atoms,chains,and clusters.Therefore,it is very important to reasonably control the atomic structure and determine the structure-activity relationship between the atomic configurations and the hydrogen evolution reaction(HER)performance.Although numerous studies have indicated that doping can yield diverse atomic structure configurations,there remains an incomplete understanding of the relationship between atomic configurations within the lattice of TMDs and their performance.Here,diverse atomic structure configurations of adsorptive doping,substitutional doping,and TMDs alloys are summarized.The structure-activity relationship between different atomic configurations and HER performance can be determined by micro-nanostructure devices and density functional theory(DFT)calculations.These diverse atomic structure configurations are of great significance for activating the inert basal plane of TMDs and improving the catalytic activity of HER.Finally,we have summarized the current challenges and future opportunities,offering new perspectives for the design of highly active and stable metal-doped TMDs catalysts.展开更多
Superconductors with reduced dimensionality have been widely explored for their exotic superconducting behaviors.Especially,at the two-dimensional limit,two-monolayer Pb films with two types of structures provide an i...Superconductors with reduced dimensionality have been widely explored for their exotic superconducting behaviors.Especially,at the two-dimensional limit,two-monolayer Pb films with two types of structures provide an ideal platform to unveil the underlying superconducting mechanism[Science 324,1314(2009)].Here,by combining scanning tunneling microscopy(STM)with the first-principle calculations,we successfully identify that these two types have different atomic lattice structures with varying stacking phases,which further enables us to calculate the phonon spectrum and electron phonon coupling strength of each type.The theoretical calculations are in good agreement with tunneling spectroscopy measurements of the superconducting transition temperatures(T_(c)),which established a correlation between atomic structures and superconductivity.Moreover,it was observed that the higher T_(c)of these two types also possess higher out-of-plane upper critical magnetic fields(Hc2).These findings will provide important new insights into two-dimensional superconductivity at the atomic level.展开更多
Atomically‐dispersed copper sites coordinated with nitrogen‐doped carbon(Cu–N–C)can provide novel possibilities to enable highly selective and active electrochemical CO_(2) reduction reactions.However,the construc...Atomically‐dispersed copper sites coordinated with nitrogen‐doped carbon(Cu–N–C)can provide novel possibilities to enable highly selective and active electrochemical CO_(2) reduction reactions.However,the construction of optimal local electronic structures for nitrogen‐coordinated Cu sites(Cu–N_(4))on carbon remains challenging.Here,we synthesized the Cu–N–C catalysts with atomically‐dispersed edge‐hosted Cu–N_(4) sites(Cu–N_(4)C_(8))located in a micropore between two graphitic sheets via a facile method to control the concentration of metal precursor.Edge‐hosted Cu–N_(4)C_(8) catalysts outperformed the previously reported M–N–C catalysts for CO_(2)‐to‐CO conversion,achieving a maximum CO Faradaic efficiency(FECO)of 96%,a CO current density of–8.97 mA cm^(–2) at–0.8 V versus reversible hydrogen electrode(RHE),and over FECO of 90%from–0.6 to–1.0 V versus RHE.Computational studies revealed that the micropore of the graphitic layer in edge‐hosted Cu–N_(4)C_(8) sites causes the d‐orbital energy level of the Cu atom to shift upward,which in return decreases the occupancy of antibonding states in the*COOH binding.This research suggests new insights into tailoring the locally coordinated structure of the electrocatalyst at the atomic scale to achieve highly selective electrocatalytic reactions.展开更多
Self-passivation in aqueous solution and sluggish surface reaction kinetics significantly limit the photoelectrochemical(PEC)performances of silicon-based photoelectrodes.Herein,a WO_(3) thin layer is deposited on the...Self-passivation in aqueous solution and sluggish surface reaction kinetics significantly limit the photoelectrochemical(PEC)performances of silicon-based photoelectrodes.Herein,a WO_(3) thin layer is deposited on the p-Si substrate by pulsed laser deposition(PLD),acting as a photocathode for PEC hydrogen generation.Compared to bare p-Si,the single-junctional p-Si/WO_(3) photoelectrodes exhibit excellent and stable PEC performances with significantly increased cathodic photocurrent density and exceptional anodic shift in onset potential for water reduction.It is revealed that the WO_(3) layer could reduce the charge transfer resistance across the electrode/electrolyte interface by eliminating the effect of Fermi level pinning on the surface of p-Si.More importantly,by varying the oxygen pressures during PLD,the collaborative modulation of W–O bond covalency and WO6 octahedral structure symmetry contributes to the promoted charge carrier transport and separation.Meanwhile,a large band bending at the p-Si/WO_(3) junction,induced by the optimized O vacancy contents in WO_(3),could provide a photovoltage as high as~500 mV to efficiently drive charge transfer to overcome the water reduction overpotential.Synergistically,by manipulating W–O local atomic structures in the deposited WO_(3) layer,a great improvement in PEC performance could be achieved over the singlejunctional p-Si/WO_(3) photocathodes for solar hydrogen generation.展开更多
The step edges and intrinsic atomic structure of single-crystal substrate play a critical role in determining the growth pathways of transition metal dichalcogenide(TMD)grains,particularly whether the TMDs will grow i...The step edges and intrinsic atomic structure of single-crystal substrate play a critical role in determining the growth pathways of transition metal dichalcogenide(TMD)grains,particularly whether the TMDs will grow into wafer-scale single-crystal or anisotropic nanoribbons.Hereby,we investigate the growth behaviours of the MoS_(2)nanograins on(0001)and()sapphire substrates.On one hand,the step edges formed on the(0001)surface after thermal treatment are found to promote the macroscopic aggregation of MoS_(2)nanograins and to form unidirectional large triangular islands along with the<>steps in the annealing process,while on the pristine(0001)surface,the MoS_(2)nanograins grow into a random network-like pattern.Moreover,oxygen treatment on the substrate can further enhance the growth of MoS_(2)nanograins.Transmission electron microscopy and fast Fourier transform patterns reveal that the substrate could modulate the orientation of MoS_(2)nanograins during their growing process.On the other hand,the MoS_(2)nanograins on the surface could self-assemble into one-dimensional nanoribbons due to the strong structural anisotropy of the substrate.In addition,the ratio of Raman intensities for peaks that correspond to the and A1g phonon modes shows a linear relationship with the grain size due to the change of the“phonon confinement”.Moreover,new peaks located at 226 and 280 cm−1 can be observed in the off-resonant and resonant Raman spectra for the MoS_(2)nanograin samples,respectively,which can be attributed to the scatterings from the edges of as-fabricated MoS_(2)nanostructures.展开更多
Lanthanides(Ln^(3+))doped luminescent materials play critical roles in lighting and display techniques.While increasing experimental and theoretical research have been carried out on aluminate-based phosphors for whit...Lanthanides(Ln^(3+))doped luminescent materials play critical roles in lighting and display techniques.While increasing experimental and theoretical research have been carried out on aluminate-based phosphors for white light-emitting diodes(WLEDs)over the past decades,most investigation was mainly focused on their luminescent properties;therefore,the local structure of the light emission center remains unclear.Especially,doping-induced local composition and structure modification around the luminescent centers have yet to be unveiled.In this study,we use advanced electron microscopy techniques including electron diffraction(ED),high-resolution transmission electron microscopy(HRTEM),high-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM),in combination with energy dispersive X-ray spectroscopy(EDX)and electron energy loss spectroscopy(EELS),to reveal atomically resolved crystalline and chemical structure of Ce^(3+)doped CaYAlO4.The microscopic results prove substantial microstructural and compositional inhomogeneities in Ce^(3+)doped CaYAlO_(4),especially the appearance of Ce dopant clustering and Ce^(3+)/Ce^(4+)valence variation.Our research provides a new understanding the structure of Ln^(3+)doped luminescent materials and will facilitate the materials design for next-generation WLEDs luminescent materials.展开更多
A super heavy element Uub (z = 112) has been studied theoretically in conjunction with rela-tivistic effects and the effects of electron correlations.The atomic structure and the oscillator strengths of low-lying leve...A super heavy element Uub (z = 112) has been studied theoretically in conjunction with rela-tivistic effects and the effects of electron correlations.The atomic structure and the oscillator strengths of low-lying levels have been calculated,and the ground states have also been determined for the singly and doubly charged ions. The influence of relativity and correlation effects to the atomic properties of such a super heavy element has been investigated in detail. The results have been compared with the properties of an element Hg. Two energy levels at wave numbers 64470 and 94392 are suggested to be of good candidates for experimental observations.展开更多
We study the local atomic structure evolution of UZr and UZr_(2) alloy melts upon solidification through ab initio molecular dynamics simulations.This is achieved by analyzing in detail the temperature dependence of s...We study the local atomic structure evolution of UZr and UZr_(2) alloy melts upon solidification through ab initio molecular dynamics simulations.This is achieved by analyzing in detail the temperature dependence of structure factors,pair correlation functions,the bond angle distributions,Honeycutt-Anderson index and Voronoi tessellation analysis as well as local bond orientation order parameters.We observe that as the temperature decreases the pair correlation functions and structure factors become more structured with clear distinctions at the liquid–solid phase transition temperature.The Honeycutt-Anderson indices and Voronoi tessellation analysis indicate that the liquid phase is predominantly comprised of the icosahedra-like local structures,whose fraction increases with decreasing temperature up to the transition temperature and then abruptly drops at the transition temperature,whereas the bcc-like local atomic structures dominate during the solidification process.Furthermore,the bond orientation order analyses with\({\overline{w}}_{6}\)–\({\overline{q}}_{6}\)correlation map and bond angle distribution imply that the local structures mainly consist of the bcc-type during the solidification below the transition temperature.All the analyses are consistent with each other,showing a first-order liquid to solid phase transition for both UZr and UZr_(2) solid solutions,which only differ in different predicted transition temperatures.This work provides a comprehensive insight into the detailed local structure evolution during the solidification of the U–Zr alloy melts at the atomic level.Similar strategies used here can be extended to studying the liquid–solid phase transition in other alloy systems.展开更多
Local atomic structure evolution of pure gadolinium(Gd)and yttrium(Y)during solidification was investigated by using ab initio molecular dynamics(AIMD)simulation.The calculated results indicate that the local short-ra...Local atomic structure evolution of pure gadolinium(Gd)and yttrium(Y)during solidification was investigated by using ab initio molecular dynamics(AIMD)simulation.The calculated results indicate that the local short-range order(SRO)in liquid Gd and Y is similar to some transitional metals with an asymmetric shape of the second peak in static structure factors.Moreover,the formation of icosahedral local motifs as a function of temperature decreases the diffusivity,which explains the connection between structure evolution and dynamic properties.In examining the topological structures of both systems,we demonstrate that small atomic displacement leads to two different types of topological sixfold rings in liquid and solid states.All analyses yield a systematic study about rare earth metals Gd and Y at the atomic level.展开更多
We have used chemical bond parameters and pattern recognition method to investigatethe regularities of the crystal type of alloy phase,and achieved good results.Theparameters used,however,are semi-empirical paramters,...We have used chemical bond parameters and pattern recognition method to investigatethe regularities of the crystal type of alloy phase,and achieved good results.Theparameters used,however,are semi-empirical paramters,which are not very strict fromtheoretical viewpoint.In this letter,we use the numbers describing atomic structure(thenumbers of valence electrons Z<sub>1</sub>,Z<sub>2</sub>,the principal quantum numbers of valence electrons n<sub>1</sub>,展开更多
Amorphous materials such as glass,polymer and amorphous alloy have broad applications ranging from daily life to extreme conditions due to their unique properties in elasticity,strength and electrical resistivity.A be...Amorphous materials such as glass,polymer and amorphous alloy have broad applications ranging from daily life to extreme conditions due to their unique properties in elasticity,strength and electrical resistivity.A better understanding of atomic structure of amorphous materials will provide invaluable information for their further engineering and applications.However,experimentally determining the three-dimensional(3D)atomic structure of amorphous materials has been a long-standing problem.Due to the disordered atomic arrangement,amorphous materials do not have any translational and rotational symmetry at long-range scale.Conventional characterization methods,such as the scattering and the microscopy imaging,can only provide the statistic structural information which is averaged over the macroscopic region.The knowledge of the 3D atomic structure of amorphous materials is limited.Recently atomic resolution electron tomography(AET)has proven an increasingly powerful tool for atomic scale structural characterization without any crystalline assumptions,which opens a door to determine the 3D structure of various amorphous materials.In this review,we summarize the state-of-art characterization methods for the exploration of atomic structures of amorphous materials in the past few decades,including X-ray/neutron diffraction,nano-beam and angstrom-beam electron diffraction,fluctuation electron microscopy,high-resolution scanning/transmission electron microscopy,and atom probe tomography.From experimental data and theoretical descriptions,3D structures of various amorphous materials have been built up.Particularly,we introduce the principles and recent progress of AET,and highlight the most recent groundbreaking feat accomplished by AET,i.e.,the first experimental determination of all 3D atomic positions in a multi-component glass-forming alloy and the 3D atomic packing in amorphous solids.We also discuss the new opportunities and challenges for characterizing the chemical and structural defects in amorphous materials.展开更多
The present investigation is motivated by finding and developing an easily understandable solution in the context of unified quantum and gravitational theories. Model-based methods are applied, with emphasis on struct...The present investigation is motivated by finding and developing an easily understandable solution in the context of unified quantum and gravitational theories. Model-based methods are applied, with emphasis on structural descriptions by introducing some strong hypotheses. A subset of the introduced hypotheses led to a surprising understanding of the internal structure and construction of quarks, neutrons, protons and more complex atomic nuclei. The research work therefore focused mainly on the model-based interpretation of subatomic processes. The results obtained so far and presented in this paper are new. They consist of a generic description model for the structure of atomic nuclei. This model contains two important structural links that originate from the initial phase of the cosmological big bang. They hold atomic parts together and are involved in many known nuclear fusion and fission processes. Modifications of them, including the electron-positron annihilation process, are necessary and will be described. A new interpretation of the strong forces from the Standard Model is possible and will be given. In addition, the formation processes for electron and positron particles are considered. Based on the structural relationships, a deeper understanding of matter transformations (transmutations), early cosmological processes and dark matter has been achieved. All challenges of this work are the logical conclusions from the used hypotheses on two structural links. They need to be further investigated and verified by theoretical and experimental works. The postulated particle in this paper, as accompanying product in the electron-positron annihilation, will play a major role for the future investigations.展开更多
<p align="justify"> <span style="font-family:Verdana;"><span style="font-family:Verdana;font-size:12px;">In this work, we extend our work on the Heisenberg model of the ...<p align="justify"> <span style="font-family:Verdana;"><span style="font-family:Verdana;font-size:12px;">In this work, we extend our work on the Heisenberg model of the neutron formulated as a dwarf hydrogen-like atom under the influence of the More General Exponential Screened Coulomb Potential (MGESCP) to show that an atomic nucleus may possess a molecular structure made up of atoms bonding together by a potential used to describe the strong force associated with a generalised Yukawa MGESCP potential. We show that the neutrons and protons are arranged into narrow lattices therefore they may fold to form three-dimensional shells by bonding similar to hydrogen bonding. In particular, the nucleons may form stable structures such as that of fullerenes in which the vertices are occupied by the nucleons which are simply just protons. For example, a nucleus with a total number of 60 nucleons may arrange itself into the topological structure of a buckminsterfullerene. We also apply </span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;font-size:12px;">Schr</span></span><span style="font-family:;"><span style="font-family:;font-size:12px;"></span><span style="text-align:left;widows:2;text-transform:none;background-color:#ffffff;font-style:normal;text-indent:0px;display:inline !important;font-family:Verdana;white-space:normal;orphans:2;float:none;letter-spacing:normal;font-size:12px;font-weight:400;word-spacing:0px;font-variant-ligatures:normal;font-variant-caps:normal;-webkit-text-stroke-width:0px;text-decoration-style:initial;text-decoration-color:initial;">ö</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;font-size:12px;">dinger</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;font-size:12px;"> wave equation with central field approximation to describe the quantum dynamics of nuclei of atomic atoms that now possess the physical structure of a dwarf molecular ion.</span></span> </p>展开更多
基金financial support by the Australian Research Council(ARC)Discovery Project(DP200101249)。
文摘Lithium-rich oxide compounds have been recognized as promising cathode materials for high performance Li-ion batteries,owing to their high specific capacity.However,it remains a great challenge to achieve the fully reversible anionic redox reactions to realize high capacity,high stability,and low voltage hysteresis for lithiumrich cathode materials.Therefore,it is critically important to comprehensively understand and control the anionic redox chemistry of lithium-rich cathode materials,including atomic structure design,and nano-scale materials engineering technologies.Herein,we summarize the recent research progress of lithium-rich cathode materials with a focus on redox chemistry.Particularly,we highlight the oxygen-based redox reactions in lithium-rich metal oxides,with critical views of designing next generation oxygen redox lithium cathode materials.Furthermore,we purposed the most promising strategies for improving the performances of lithium-rich cathode materials with a technology-spectrum from the atomic scale to nano-scale.
基金Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0402300)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB34020000)the Heavy Ion Research Facility in Lanzhou (HIRFL)
文摘The research progresses on the investigations of atomic structure and collision dynamics with highly charged ions based on the heavy ion storage rings and electron ion beam traps in recent 20 years are reviewed.The structure part covers test of quantum electrodynamics and electron correlation in strong Coulomb field studied through dielectronic recombi-nation spectroscopy and VUV/x-ray spectroscopy.The collision dynamics part includes charge exchange dynamics in ion-atom collisions mainly in Bohr velocity region,ion-induced fragmentation mechanisms of molecules,hydrogen-bound and van de Waals bound clusters,interference,and phase information observed in ion-atom/molecule collisions.With this achievements,two aspects of theoretical studies related to low energy and relativistic energy collisions are presented.The applications of data relevant to key atomic processes like dielectronic recombination and charge exchanges involving highly charged ions are discussed.At the end of this review,some future prospects of research related to highly charged ions are proposed.
基金supported by the National Natural Science Foundation of China(Grant Nos.11474208 and 11565018)the Department of Education Fund Item of Gansu Province,China(Grant No.2015B-109)the Doctoral Scientific Fund Project of Longdong University,China(Grant No.XYBY1601)
文摘The atomic structure and transition properties of H-like Al embedded in hot and dense plasmas are investigated using modified GRASP2 K code. The plasma screening effect on the nucleus is described using the self-consistent field ion sphere model. The effective nuclear potential decreases much more quickly with increasing average free electron density,but increases slightly with increasing electron temperature. The variations of the transition energies, transition probabilities,and oscillator strengths with the free electron density and electron temperature are the same as that of the effective nuclear potential. The results reported in this work agree well with other available theoretical results and are useful for plasma diagnostics.
基金The authors would like to acknowledge the financial support by the Special Funds for the Major State Basic Research Projects of China(Grant No.G20000670104).
文摘The results of molecular dynamics calculations on the interfacial energies and atomic structures of Ag/Ni and Cu/Ni interfaces are presented. Calculation on Ag/Ni interfaces with low-index planes shows that those containing the (111) plane have the lowest energies, which is in agreement with the experiments. Comparing surface energy with interfacial energy, it is found the order of the interfacial energies of Ag/Ni and Cu/Ni containing the planes fall in the same order as solid-vapor surface energies of Ag, Cu and Ni. In this MD simulation, the relaxed atomic structure and dislocation network of (110)_Ag||(110)Ni interface are coincident to HREM observations.
基金Supported by the National Natural Science Foundation of China under Grant No 11174082
文摘The detailed atomic structure of quasicrystals has been an open problem for decades. Here we present a quasilattiee-conserved optimization method (quasi-OPT), under particular quasiperiodic boundary conditions. As the atomic coordinates are described by basic cells and quasilattices, we are able to maintain the self-similarity characteristics of qusicrystals with the atomic structure of the boundary region updated timely following the relaxing region. Exemplified with the study of decagonal Al-Co-Ni (d-Al-Co-Ni), we propose a more stable atomic structure model based on Penrose quasilattice and our quasi-OPT simulations. In particular, rectangle-triangle ruIes are suggested for the local atomic structures of d-Al-Co-Ni quasicrystals.
文摘Nanometer-sized metal clusters were prepared inside single crystalline MgO films by vacuum co-deposition of metals and MgO. The atomic structure was studied by high-resolution electron microscopy (HREM) and nm-area electron diffraction. The size of the clusters is ranging from 1 nm to 3 nm without those larger than 5 nm, and most of them have definite epitaxial orientations with the MgO matrix films. The character of the composite films is very much useful for the studies of various kinds of physical properties with anisotroPy. The physical properties such as electric transport, magnetic, optical absorption, sintering and catalytic ones were thus measured on the same samples analyzed by HREM by using high sensitivity apparatus with interest of clarifying the retationship between the atomic structure and physical properties
基金National Key Research and Development Program of China(Grant No.2016YFB0301201)the National Natural Science Foundation of China(Grant No.51425402,51371066,and 51671073).
文摘“Hydrogen in metallic glasses”has become a popular topic for material scientists,yet few studies focus on the atomic⁃scale details.Herein,by utilizing molecular dynamic simulations,the changes on the atomic structure of Cu50Zr50 metallic glasses after melt hydrogenation were systematically analyzed,with the aim of understanding the differences of mechanical behavior between these amorphous alloys.The simulated analyses indicate that the hydrogenated samples become more compact than the H⁃free one,but the fraction of the dominant coordination polyhedra with higher degree of local fivefold symmetry significantly decreases accompanied by the addition of H atoms.Accordingly,melt hydrogenation can induce much more local“soft spots”in metallic glasses to alleviate the degree of strain localization during deformation,i.e.,it has a positive influence on the deformability of glassy alloys in agreement with experimental results.
基金supported by the Natural Science Foundation of China(No.51902101)the Natural Science Foundation of Jiangsu Province(No.BK20201381)+1 种基金the Science Foundation of Nanjing University of Posts and Telecommunications(Nos.NY219144,NY221046)the National College Student Innovation and Entrepreneurship Training Program(No.202210293171K).
文摘Doping foreign metal atoms into the substrate of transition metal dichalcogenides(TMDs)enables the formation of diverse atomic structure configurations,including isolated atoms,chains,and clusters.Therefore,it is very important to reasonably control the atomic structure and determine the structure-activity relationship between the atomic configurations and the hydrogen evolution reaction(HER)performance.Although numerous studies have indicated that doping can yield diverse atomic structure configurations,there remains an incomplete understanding of the relationship between atomic configurations within the lattice of TMDs and their performance.Here,diverse atomic structure configurations of adsorptive doping,substitutional doping,and TMDs alloys are summarized.The structure-activity relationship between different atomic configurations and HER performance can be determined by micro-nanostructure devices and density functional theory(DFT)calculations.These diverse atomic structure configurations are of great significance for activating the inert basal plane of TMDs and improving the catalytic activity of HER.Finally,we have summarized the current challenges and future opportunities,offering new perspectives for the design of highly active and stable metal-doped TMDs catalysts.
基金supported by the National Key Basic Research Program of China(Grant No.2017YFA0205004)the National Natural Science Foundation of China(Grant Nos.92165201,11474261,11634011,and 11974323)+2 种基金the Fundamental Research Funds for the Central Universities(Grant Nos.WK3510000006,and WK3430000003)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0302800)the Anhui Initiative in Quantum Information Technologies(Grant No.AHY170000)。
文摘Superconductors with reduced dimensionality have been widely explored for their exotic superconducting behaviors.Especially,at the two-dimensional limit,two-monolayer Pb films with two types of structures provide an ideal platform to unveil the underlying superconducting mechanism[Science 324,1314(2009)].Here,by combining scanning tunneling microscopy(STM)with the first-principle calculations,we successfully identify that these two types have different atomic lattice structures with varying stacking phases,which further enables us to calculate the phonon spectrum and electron phonon coupling strength of each type.The theoretical calculations are in good agreement with tunneling spectroscopy measurements of the superconducting transition temperatures(T_(c)),which established a correlation between atomic structures and superconductivity.Moreover,it was observed that the higher T_(c)of these two types also possess higher out-of-plane upper critical magnetic fields(Hc2).These findings will provide important new insights into two-dimensional superconductivity at the atomic level.
基金National Research Foundation of Korea,Grant/Award Numbers:NRF‐2019M3D1A1079303,NRF‐2021R1A2C1011415,NRF‐2021R1A2C3004019。
文摘Atomically‐dispersed copper sites coordinated with nitrogen‐doped carbon(Cu–N–C)can provide novel possibilities to enable highly selective and active electrochemical CO_(2) reduction reactions.However,the construction of optimal local electronic structures for nitrogen‐coordinated Cu sites(Cu–N_(4))on carbon remains challenging.Here,we synthesized the Cu–N–C catalysts with atomically‐dispersed edge‐hosted Cu–N_(4) sites(Cu–N_(4)C_(8))located in a micropore between two graphitic sheets via a facile method to control the concentration of metal precursor.Edge‐hosted Cu–N_(4)C_(8) catalysts outperformed the previously reported M–N–C catalysts for CO_(2)‐to‐CO conversion,achieving a maximum CO Faradaic efficiency(FECO)of 96%,a CO current density of–8.97 mA cm^(–2) at–0.8 V versus reversible hydrogen electrode(RHE),and over FECO of 90%from–0.6 to–1.0 V versus RHE.Computational studies revealed that the micropore of the graphitic layer in edge‐hosted Cu–N_(4)C_(8) sites causes the d‐orbital energy level of the Cu atom to shift upward,which in return decreases the occupancy of antibonding states in the*COOH binding.This research suggests new insights into tailoring the locally coordinated structure of the electrocatalyst at the atomic scale to achieve highly selective electrocatalytic reactions.
基金The authors acknowledge the financial support from the National Key Research and Development Program of China(Nos.2018YFB1502003 and 2017YFE0193900)the National Natural Science Foundation of China(Nos.51961165103 and 21875183)+2 种基金the National Program for Support of Top-notch Young Professionals“The Youth Innovation Team of Shaanxi Universities”C.L.D.would like to acknowledge the financial support under contracts MoST 107-2112-M-032-004MY3 and 108-2218-E-032-003-MY3.
文摘Self-passivation in aqueous solution and sluggish surface reaction kinetics significantly limit the photoelectrochemical(PEC)performances of silicon-based photoelectrodes.Herein,a WO_(3) thin layer is deposited on the p-Si substrate by pulsed laser deposition(PLD),acting as a photocathode for PEC hydrogen generation.Compared to bare p-Si,the single-junctional p-Si/WO_(3) photoelectrodes exhibit excellent and stable PEC performances with significantly increased cathodic photocurrent density and exceptional anodic shift in onset potential for water reduction.It is revealed that the WO_(3) layer could reduce the charge transfer resistance across the electrode/electrolyte interface by eliminating the effect of Fermi level pinning on the surface of p-Si.More importantly,by varying the oxygen pressures during PLD,the collaborative modulation of W–O bond covalency and WO6 octahedral structure symmetry contributes to the promoted charge carrier transport and separation.Meanwhile,a large band bending at the p-Si/WO_(3) junction,induced by the optimized O vacancy contents in WO_(3),could provide a photovoltage as high as~500 mV to efficiently drive charge transfer to overcome the water reduction overpotential.Synergistically,by manipulating W–O local atomic structures in the deposited WO_(3) layer,a great improvement in PEC performance could be achieved over the singlejunctional p-Si/WO_(3) photocathodes for solar hydrogen generation.
基金the financial support from the Australian Research Council Discovery Program(No.DP190103661).
文摘The step edges and intrinsic atomic structure of single-crystal substrate play a critical role in determining the growth pathways of transition metal dichalcogenide(TMD)grains,particularly whether the TMDs will grow into wafer-scale single-crystal or anisotropic nanoribbons.Hereby,we investigate the growth behaviours of the MoS_(2)nanograins on(0001)and()sapphire substrates.On one hand,the step edges formed on the(0001)surface after thermal treatment are found to promote the macroscopic aggregation of MoS_(2)nanograins and to form unidirectional large triangular islands along with the<>steps in the annealing process,while on the pristine(0001)surface,the MoS_(2)nanograins grow into a random network-like pattern.Moreover,oxygen treatment on the substrate can further enhance the growth of MoS_(2)nanograins.Transmission electron microscopy and fast Fourier transform patterns reveal that the substrate could modulate the orientation of MoS_(2)nanograins during their growing process.On the other hand,the MoS_(2)nanograins on the surface could self-assemble into one-dimensional nanoribbons due to the strong structural anisotropy of the substrate.In addition,the ratio of Raman intensities for peaks that correspond to the and A1g phonon modes shows a linear relationship with the grain size due to the change of the“phonon confinement”.Moreover,new peaks located at 226 and 280 cm−1 can be observed in the off-resonant and resonant Raman spectra for the MoS_(2)nanograin samples,respectively,which can be attributed to the scatterings from the edges of as-fabricated MoS_(2)nanostructures.
基金funded by the National Natural Science Foundation of China(Nos.52002357,22105175,and 51932009)P.L.acknowledges the financial support from the Carlsberg Foundation(No.CF20-0612).
文摘Lanthanides(Ln^(3+))doped luminescent materials play critical roles in lighting and display techniques.While increasing experimental and theoretical research have been carried out on aluminate-based phosphors for white light-emitting diodes(WLEDs)over the past decades,most investigation was mainly focused on their luminescent properties;therefore,the local structure of the light emission center remains unclear.Especially,doping-induced local composition and structure modification around the luminescent centers have yet to be unveiled.In this study,we use advanced electron microscopy techniques including electron diffraction(ED),high-resolution transmission electron microscopy(HRTEM),high-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM),in combination with energy dispersive X-ray spectroscopy(EDX)and electron energy loss spectroscopy(EELS),to reveal atomically resolved crystalline and chemical structure of Ce^(3+)doped CaYAlO4.The microscopic results prove substantial microstructural and compositional inhomogeneities in Ce^(3+)doped CaYAlO_(4),especially the appearance of Ce dopant clustering and Ce^(3+)/Ce^(4+)valence variation.Our research provides a new understanding the structure of Ln^(3+)doped luminescent materials and will facilitate the materials design for next-generation WLEDs luminescent materials.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 10376026 and 10434100)the Foundation of Theoretical Nuclear Physics of National Laboratory of Heavy Ion Accelerator of Lanzhouthe China/Ireland Science and Technology Collaboration Research Fund (No. CI-2004-07)
文摘A super heavy element Uub (z = 112) has been studied theoretically in conjunction with rela-tivistic effects and the effects of electron correlations.The atomic structure and the oscillator strengths of low-lying levels have been calculated,and the ground states have also been determined for the singly and doubly charged ions. The influence of relativity and correlation effects to the atomic properties of such a super heavy element has been investigated in detail. The results have been compared with the properties of an element Hg. Two energy levels at wave numbers 64470 and 94392 are suggested to be of good candidates for experimental observations.
基金This work was supported by the National Science Fund for Distinguished Young Scholars(No.51725103)the Rare and Precious Metals Material Genetic Engineering Project of Yunnan Province(No.202002AB080001-1)the National Natural Science Foundation of China(Grant No.52188101).All calculations have been performed on the high-performance computational cluster in the Shenyang National University Science and Technology Park.
文摘We study the local atomic structure evolution of UZr and UZr_(2) alloy melts upon solidification through ab initio molecular dynamics simulations.This is achieved by analyzing in detail the temperature dependence of structure factors,pair correlation functions,the bond angle distributions,Honeycutt-Anderson index and Voronoi tessellation analysis as well as local bond orientation order parameters.We observe that as the temperature decreases the pair correlation functions and structure factors become more structured with clear distinctions at the liquid–solid phase transition temperature.The Honeycutt-Anderson indices and Voronoi tessellation analysis indicate that the liquid phase is predominantly comprised of the icosahedra-like local structures,whose fraction increases with decreasing temperature up to the transition temperature and then abruptly drops at the transition temperature,whereas the bcc-like local atomic structures dominate during the solidification process.Furthermore,the bond orientation order analyses with\({\overline{w}}_{6}\)–\({\overline{q}}_{6}\)correlation map and bond angle distribution imply that the local structures mainly consist of the bcc-type during the solidification below the transition temperature.All the analyses are consistent with each other,showing a first-order liquid to solid phase transition for both UZr and UZr_(2) solid solutions,which only differ in different predicted transition temperatures.This work provides a comprehensive insight into the detailed local structure evolution during the solidification of the U–Zr alloy melts at the atomic level.Similar strategies used here can be extended to studying the liquid–solid phase transition in other alloy systems.
基金supported by the National Science and Technology Major Project of China(2017-Ⅶ-0008-0102,2019-Ⅵ-0023-0140)Independent Research and Development Project of State Key Laboratory of Advanced Special Steel,Shanghai Key Laboratory of Advanced Ferrometallurgy,Shanghai University(SKLASS 2021-Z12)+2 种基金the National Natural Science Foundation of China(12074241,52130204,11929401,51861145315)the Science and Technology Commission of Shanghai Municipality(19010500500,20501130600)the Key Research Project of Zhejiang Laboratory(2021PE0AC02)。
文摘Local atomic structure evolution of pure gadolinium(Gd)and yttrium(Y)during solidification was investigated by using ab initio molecular dynamics(AIMD)simulation.The calculated results indicate that the local short-range order(SRO)in liquid Gd and Y is similar to some transitional metals with an asymmetric shape of the second peak in static structure factors.Moreover,the formation of icosahedral local motifs as a function of temperature decreases the diffusivity,which explains the connection between structure evolution and dynamic properties.In examining the topological structures of both systems,we demonstrate that small atomic displacement leads to two different types of topological sixfold rings in liquid and solid states.All analyses yield a systematic study about rare earth metals Gd and Y at the atomic level.
文摘We have used chemical bond parameters and pattern recognition method to investigatethe regularities of the crystal type of alloy phase,and achieved good results.Theparameters used,however,are semi-empirical paramters,which are not very strict fromtheoretical viewpoint.In this letter,we use the numbers describing atomic structure(thenumbers of valence electrons Z<sub>1</sub>,Z<sub>2</sub>,the principal quantum numbers of valence electrons n<sub>1</sub>,
基金supported by the National Natural Science Foundation of China(22172003)High-performance Computing Platform of Peking University.
文摘Amorphous materials such as glass,polymer and amorphous alloy have broad applications ranging from daily life to extreme conditions due to their unique properties in elasticity,strength and electrical resistivity.A better understanding of atomic structure of amorphous materials will provide invaluable information for their further engineering and applications.However,experimentally determining the three-dimensional(3D)atomic structure of amorphous materials has been a long-standing problem.Due to the disordered atomic arrangement,amorphous materials do not have any translational and rotational symmetry at long-range scale.Conventional characterization methods,such as the scattering and the microscopy imaging,can only provide the statistic structural information which is averaged over the macroscopic region.The knowledge of the 3D atomic structure of amorphous materials is limited.Recently atomic resolution electron tomography(AET)has proven an increasingly powerful tool for atomic scale structural characterization without any crystalline assumptions,which opens a door to determine the 3D structure of various amorphous materials.In this review,we summarize the state-of-art characterization methods for the exploration of atomic structures of amorphous materials in the past few decades,including X-ray/neutron diffraction,nano-beam and angstrom-beam electron diffraction,fluctuation electron microscopy,high-resolution scanning/transmission electron microscopy,and atom probe tomography.From experimental data and theoretical descriptions,3D structures of various amorphous materials have been built up.Particularly,we introduce the principles and recent progress of AET,and highlight the most recent groundbreaking feat accomplished by AET,i.e.,the first experimental determination of all 3D atomic positions in a multi-component glass-forming alloy and the 3D atomic packing in amorphous solids.We also discuss the new opportunities and challenges for characterizing the chemical and structural defects in amorphous materials.
文摘The present investigation is motivated by finding and developing an easily understandable solution in the context of unified quantum and gravitational theories. Model-based methods are applied, with emphasis on structural descriptions by introducing some strong hypotheses. A subset of the introduced hypotheses led to a surprising understanding of the internal structure and construction of quarks, neutrons, protons and more complex atomic nuclei. The research work therefore focused mainly on the model-based interpretation of subatomic processes. The results obtained so far and presented in this paper are new. They consist of a generic description model for the structure of atomic nuclei. This model contains two important structural links that originate from the initial phase of the cosmological big bang. They hold atomic parts together and are involved in many known nuclear fusion and fission processes. Modifications of them, including the electron-positron annihilation process, are necessary and will be described. A new interpretation of the strong forces from the Standard Model is possible and will be given. In addition, the formation processes for electron and positron particles are considered. Based on the structural relationships, a deeper understanding of matter transformations (transmutations), early cosmological processes and dark matter has been achieved. All challenges of this work are the logical conclusions from the used hypotheses on two structural links. They need to be further investigated and verified by theoretical and experimental works. The postulated particle in this paper, as accompanying product in the electron-positron annihilation, will play a major role for the future investigations.
文摘<p align="justify"> <span style="font-family:Verdana;"><span style="font-family:Verdana;font-size:12px;">In this work, we extend our work on the Heisenberg model of the neutron formulated as a dwarf hydrogen-like atom under the influence of the More General Exponential Screened Coulomb Potential (MGESCP) to show that an atomic nucleus may possess a molecular structure made up of atoms bonding together by a potential used to describe the strong force associated with a generalised Yukawa MGESCP potential. We show that the neutrons and protons are arranged into narrow lattices therefore they may fold to form three-dimensional shells by bonding similar to hydrogen bonding. In particular, the nucleons may form stable structures such as that of fullerenes in which the vertices are occupied by the nucleons which are simply just protons. For example, a nucleus with a total number of 60 nucleons may arrange itself into the topological structure of a buckminsterfullerene. We also apply </span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;font-size:12px;">Schr</span></span><span style="font-family:;"><span style="font-family:;font-size:12px;"></span><span style="text-align:left;widows:2;text-transform:none;background-color:#ffffff;font-style:normal;text-indent:0px;display:inline !important;font-family:Verdana;white-space:normal;orphans:2;float:none;letter-spacing:normal;font-size:12px;font-weight:400;word-spacing:0px;font-variant-ligatures:normal;font-variant-caps:normal;-webkit-text-stroke-width:0px;text-decoration-style:initial;text-decoration-color:initial;">ö</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;font-size:12px;">dinger</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;font-size:12px;"> wave equation with central field approximation to describe the quantum dynamics of nuclei of atomic atoms that now possess the physical structure of a dwarf molecular ion.</span></span> </p>