Low dimensional materials are suitable candidates applying in next-generation high-performance electronic,optoelectronic,and energy storage devices because of their uniquely physical and chemical properties.In particu...Low dimensional materials are suitable candidates applying in next-generation high-performance electronic,optoelectronic,and energy storage devices because of their uniquely physical and chemical properties.In particular,one-dimensional(1D)atomic wires(AWs)exfoliating from 1D van der Waals(vdW)bulks are more promising in next generation nanometer(nm)even sub-nm device applications owing to their width of few-atoms scale and free dandling bonds states.Although several 1D AWs have been experimentally prepared,few 1D AW candidates could be practically applied in devices owing to lack of enough suitable 1D AWs.Herein,367 kinds of 1D AWs have been screened and the corresponding computational database including structures,electronic structures,magnetic states,and stabilities of these 1D AWs has been organized and established.Among these systems,unary and binary 1D AWs with relatively small exfoliation energy are thermodynamically stable and theoretically feasible to be exfoliated.More significantly,rich quantum states emerge,such as 1D semiconductors,1D metals,1D semimetals,and 1D magnetism.This database will offer an ideal platform to further explore exotic quantum states and exploit practical device applications using 1D materials.The database are openly available at http://www.dx.doi.org/10.11922/sciencedb.j00113.00004.展开更多
Using ab initio total energy calculations with the full-potential linearized augmented plane wave method, the possibilities of magnetism in one-dimensional In and Tl wires were explored and their properties as the fun...Using ab initio total energy calculations with the full-potential linearized augmented plane wave method, the possibilities of magnetism in one-dimensional In and Tl wires were explored and their properties as the function of geometric structures were studied. The results suggest that the linear In and Tl wires show magnetization at the equilibrium bond distance with magnetic moments of 0.71 and 0.67 μB/atom, respectively. Allowing ions to relax, the wires were deformed as zigzag structures, but no dimerization occurs. The zigzag wires also exhibit spontaneous magnetization, although the magnetic moments are lower than those of straight wires.展开更多
By using the full-potential linearized augmented plane wave method to perform ab initio total energy calculations, we have explored magnetic ordering in one-dimensional Zr wires. The result shows that Zr can form line...By using the full-potential linearized augmented plane wave method to perform ab initio total energy calculations, we have explored magnetic ordering in one-dimensional Zr wires. The result shows that Zr can form linear, or dimerized, or zigzag wires, and the magnetic properties strongly depend on their geometric structures. The linear and zigzag wires exhibit ferromagnetic ground states at the equilibrium bonding distance, while the dimerized wire, despite its higher stability than that of the linear one, exhibits nonmagnetic ground states. The most stable geometry is shown to be the zigzag wire with a magnetic moment of 0.26μB per atom.展开更多
A new scheme to realize a two-dimensional (2D) array of magnetic micro-lenses for a cold atomic beam. formed by an array of square current-carrying wires, is proposed. We calculate the spatial distributions of the m...A new scheme to realize a two-dimensional (2D) array of magnetic micro-lenses for a cold atomic beam. formed by an array of square current-carrying wires, is proposed. We calculate the spatial distributions of the magnetic fields from the array of current-carrying wires and the magnetic focusing potential for cold rubidium atoms, and study the dynamic focusing processes of cold atoms passing through the mag- netic micro-lens array and its focusing properties by using Monte-Carlo simulations and trajectory tracing method. The result shows that the proposed micro-lens array can be used to focus effectively a cold atomic beam, even to load ultracold atoms or a BEC sample into a 2D optical lattice formed by blue detuned hollow beams.展开更多
基金the National Key Research and Development Program of China(Grant No.2017YFE0129000)the National Natural Science Foundation of China(Grant Nos.51871121,11874223,and 11404172).
文摘Low dimensional materials are suitable candidates applying in next-generation high-performance electronic,optoelectronic,and energy storage devices because of their uniquely physical and chemical properties.In particular,one-dimensional(1D)atomic wires(AWs)exfoliating from 1D van der Waals(vdW)bulks are more promising in next generation nanometer(nm)even sub-nm device applications owing to their width of few-atoms scale and free dandling bonds states.Although several 1D AWs have been experimentally prepared,few 1D AW candidates could be practically applied in devices owing to lack of enough suitable 1D AWs.Herein,367 kinds of 1D AWs have been screened and the corresponding computational database including structures,electronic structures,magnetic states,and stabilities of these 1D AWs has been organized and established.Among these systems,unary and binary 1D AWs with relatively small exfoliation energy are thermodynamically stable and theoretically feasible to be exfoliated.More significantly,rich quantum states emerge,such as 1D semiconductors,1D metals,1D semimetals,and 1D magnetism.This database will offer an ideal platform to further explore exotic quantum states and exploit practical device applications using 1D materials.The database are openly available at http://www.dx.doi.org/10.11922/sciencedb.j00113.00004.
基金supported by the Natural Science Foundation of Henan Province(Grant No.82300443203)
文摘Using ab initio total energy calculations with the full-potential linearized augmented plane wave method, the possibilities of magnetism in one-dimensional In and Tl wires were explored and their properties as the function of geometric structures were studied. The results suggest that the linear In and Tl wires show magnetization at the equilibrium bond distance with magnetic moments of 0.71 and 0.67 μB/atom, respectively. Allowing ions to relax, the wires were deformed as zigzag structures, but no dimerization occurs. The zigzag wires also exhibit spontaneous magnetization, although the magnetic moments are lower than those of straight wires.
基金Project supported by the National Natural Science Foundation of China (Grant No 10234010).
文摘By using the full-potential linearized augmented plane wave method to perform ab initio total energy calculations, we have explored magnetic ordering in one-dimensional Zr wires. The result shows that Zr can form linear, or dimerized, or zigzag wires, and the magnetic properties strongly depend on their geometric structures. The linear and zigzag wires exhibit ferromagnetic ground states at the equilibrium bonding distance, while the dimerized wire, despite its higher stability than that of the linear one, exhibits nonmagnetic ground states. The most stable geometry is shown to be the zigzag wire with a magnetic moment of 0.26μB per atom.
基金This work was supported by the National Natural Science Foundation of China (No.10174050, 10374029, and 10434060), the Shanghai Priority Academic Discipline,and the 211 Foundation of the Educational Ministry of China.
文摘A new scheme to realize a two-dimensional (2D) array of magnetic micro-lenses for a cold atomic beam. formed by an array of square current-carrying wires, is proposed. We calculate the spatial distributions of the magnetic fields from the array of current-carrying wires and the magnetic focusing potential for cold rubidium atoms, and study the dynamic focusing processes of cold atoms passing through the mag- netic micro-lens array and its focusing properties by using Monte-Carlo simulations and trajectory tracing method. The result shows that the proposed micro-lens array can be used to focus effectively a cold atomic beam, even to load ultracold atoms or a BEC sample into a 2D optical lattice formed by blue detuned hollow beams.