A combustion tube experiment platform was designed and used to study the inerting conditions and capacity of entrained atomized water on premixed methane–air flame. The structure of a laminar flame of premixed methan...A combustion tube experiment platform was designed and used to study the inerting conditions and capacity of entrained atomized water on premixed methane–air flame. The structure of a laminar flame of premixed methane–air gas and the process of interaction between atomized water and flame was recorded, and the rules of combustion velocity, stability and strength rate of laminar flame were experimentally studied. The inerting process and mechanism was analyzed, and the characteristics of inerting premixed methane–air gas within explosion limits by atomized water were acquired. The research results show that: for the premixed methane–air gas with a concentration of 7%, the minimum inerting atomized water flux is 20.8 m L/(m2min); for the premixed methane–air gas with a concentration of 9%, the minimum inerting atomized water flux is 32.9 m L/(m2min); for the premixed methane–air gas with a concentration of 11%, the minimum inerting atomized water flux is 44.6 m L/(m2min). The research results are significant for extinguishing methane flame and inhibiting of methane explosion using atomized water.展开更多
Water atomized Fe Ni Mo steel powder, was utilized as base powder for designing powder mixtures for warm pressing. The warm pressing and sintering behaviours of the powder mixtures were studied. The results show that,...Water atomized Fe Ni Mo steel powder, was utilized as base powder for designing powder mixtures for warm pressing. The warm pressing and sintering behaviours of the powder mixtures were studied. The results show that, compared with the pressing at room temperature, the green density gain by warm pressing is within a range of 0.10 0.19 g/cm 3 and reduction in spring back is 30% 40% of the ambient, and maximum green density of 7.32 g/cm 3 at 735 MPa is obtained as the graphite mass fraction is 0.8%. It was found that sintered densities of the compacts were reduced slightly due to releasing of elastic stress stored in the compacts during sintering. The warm pressing of steel powders gives evidence for substituting the traditional double pressing and double sintering process.展开更多
Copper, iron and cobalt based pre-alloyed powders for diamond tools were prepared by ultrahigh pressure water atomization(UPWA) process. Pre-alloyed powders prepared by different processes including UPWA, convention...Copper, iron and cobalt based pre-alloyed powders for diamond tools were prepared by ultrahigh pressure water atomization(UPWA) process. Pre-alloyed powders prepared by different processes including UPWA, conventional water atomization (CWA) and elemental metal mechanical mixing (EMMM) were sintered to segments and then compared in mechanical properties, holding force between matrix and diamond, fracture morphology of blank and sintering diamond section containing matrix. The results showed that the pre-alloyed powder prepared by UPWA exhibits the best mechanical properties including the relative density, the hardness and the bending strength of matrix sinteredsegment. Sintered segments fractography of UPWA pre-alloyed powder indicatesmechanical mosaic strength and chemical bonding force between the pre-alloyed powder and the diamond, leading to the great increase in the holding force between matrix and diamond. The mechanical performance andthe service life of diamond tools were greatly improved by UPWA pre-alloyed powders.展开更多
A couple of additional cooling nozzles were assembled under traditionalatomization nozzles in order to improve the process and produce the powder with fine microstructureand low oxygen. The influence of the process pa...A couple of additional cooling nozzles were assembled under traditionalatomization nozzles in order to improve the process and produce the powder with fine microstructureand low oxygen. The influence of the process parameters on the properties of the powder wasinvestigated. The results show that finer powders with lower oxygen content and more irregular shapecan be achieved by combinatorial atomizing process comparing with normal one under the sameatomizing pressure.展开更多
On-line ion-exchange separation and preconcentration were combined with flow-injection hydride generation atomic absorption spectrometry (HGAAS) to determine ultra-trace amounts of antimony in water samples. Antimony(...On-line ion-exchange separation and preconcentration were combined with flow-injection hydride generation atomic absorption spectrometry (HGAAS) to determine ultra-trace amounts of antimony in water samples. Antimony(Ⅲ) was preconcentrated on a micro-column packed with CPG-8Q chelating ion-exchanger using time-based sample loading and eluted by 4 mol l^(-1) HCl directly into the hydride generation AAS system. A detection limit (3σ) of 0.0015μg l^(-1) Sb(Ⅲ) was obtained on the basis of a 20 fold enrichment and with a sampling frequency of 60h^(-1). The precision was 1.0% r.s.d.(n=11) at the 0.5μg l^(-1) Sb(Ⅲ) level. Recoveries for the analysis of antimony in tap water, snow water and sea water samples were in the range 97-102%.展开更多
基金supported by the National Natural Science Foundation of China(No.51304006)the Natural Science Foundation of Anhui Province(No.1408085QE87)the Training Fund for Youth Backbones of Anhui University of Science&Technology(No.20120012)
文摘A combustion tube experiment platform was designed and used to study the inerting conditions and capacity of entrained atomized water on premixed methane–air flame. The structure of a laminar flame of premixed methane–air gas and the process of interaction between atomized water and flame was recorded, and the rules of combustion velocity, stability and strength rate of laminar flame were experimentally studied. The inerting process and mechanism was analyzed, and the characteristics of inerting premixed methane–air gas within explosion limits by atomized water were acquired. The research results show that: for the premixed methane–air gas with a concentration of 7%, the minimum inerting atomized water flux is 20.8 m L/(m2min); for the premixed methane–air gas with a concentration of 9%, the minimum inerting atomized water flux is 32.9 m L/(m2min); for the premixed methane–air gas with a concentration of 11%, the minimum inerting atomized water flux is 44.6 m L/(m2min). The research results are significant for extinguishing methane flame and inhibiting of methane explosion using atomized water.
文摘Water atomized Fe Ni Mo steel powder, was utilized as base powder for designing powder mixtures for warm pressing. The warm pressing and sintering behaviours of the powder mixtures were studied. The results show that, compared with the pressing at room temperature, the green density gain by warm pressing is within a range of 0.10 0.19 g/cm 3 and reduction in spring back is 30% 40% of the ambient, and maximum green density of 7.32 g/cm 3 at 735 MPa is obtained as the graphite mass fraction is 0.8%. It was found that sintered densities of the compacts were reduced slightly due to releasing of elastic stress stored in the compacts during sintering. The warm pressing of steel powders gives evidence for substituting the traditional double pressing and double sintering process.
基金Projects(2010SK3172,2015JC3005)supported by the Key Program of Science and Technology Project of Hunan Province,China
文摘Copper, iron and cobalt based pre-alloyed powders for diamond tools were prepared by ultrahigh pressure water atomization(UPWA) process. Pre-alloyed powders prepared by different processes including UPWA, conventional water atomization (CWA) and elemental metal mechanical mixing (EMMM) were sintered to segments and then compared in mechanical properties, holding force between matrix and diamond, fracture morphology of blank and sintering diamond section containing matrix. The results showed that the pre-alloyed powder prepared by UPWA exhibits the best mechanical properties including the relative density, the hardness and the bending strength of matrix sinteredsegment. Sintered segments fractography of UPWA pre-alloyed powder indicatesmechanical mosaic strength and chemical bonding force between the pre-alloyed powder and the diamond, leading to the great increase in the holding force between matrix and diamond. The mechanical performance andthe service life of diamond tools were greatly improved by UPWA pre-alloyed powders.
文摘A couple of additional cooling nozzles were assembled under traditionalatomization nozzles in order to improve the process and produce the powder with fine microstructureand low oxygen. The influence of the process parameters on the properties of the powder wasinvestigated. The results show that finer powders with lower oxygen content and more irregular shapecan be achieved by combinatorial atomizing process comparing with normal one under the sameatomizing pressure.
文摘On-line ion-exchange separation and preconcentration were combined with flow-injection hydride generation atomic absorption spectrometry (HGAAS) to determine ultra-trace amounts of antimony in water samples. Antimony(Ⅲ) was preconcentrated on a micro-column packed with CPG-8Q chelating ion-exchanger using time-based sample loading and eluted by 4 mol l^(-1) HCl directly into the hydride generation AAS system. A detection limit (3σ) of 0.0015μg l^(-1) Sb(Ⅲ) was obtained on the basis of a 20 fold enrichment and with a sampling frequency of 60h^(-1). The precision was 1.0% r.s.d.(n=11) at the 0.5μg l^(-1) Sb(Ⅲ) level. Recoveries for the analysis of antimony in tap water, snow water and sea water samples were in the range 97-102%.