Atractylodes lancea(called Cangzhu in China)is a medicinal plant that has long been used as tonic agent in various ethno-medical systems in East Asia,especially in China,for the treatment of gastrointestinal dysfuncti...Atractylodes lancea(called Cangzhu in China)is a medicinal plant that has long been used as tonic agent in various ethno-medical systems in East Asia,especially in China,for the treatment of gastrointestinal dysfunction,cancer,osteoporosis,obesity and fetal irritability.We used the TCMSP database to search for the main active ingredients and traditional Chinese medicine targets of Atractylodes macrocephala.There are a total of 38 related articles,of which 27 are closely related to chemical composition and activity.This study reviews the chemical components and pharmacological effects of A.lancea,aiming to provide reference for its further research and development.展开更多
BACKGROUND Atractylodes japonica Koidz.ex Kitam.(A.japonica,Chinese name:Guan-Cangzhu,Japanese name:Byaku-jutsu),a perennial herb,which is mainly distributed in northeast area of China,it’s often used to treat digest...BACKGROUND Atractylodes japonica Koidz.ex Kitam.(A.japonica,Chinese name:Guan-Cangzhu,Japanese name:Byaku-jutsu),a perennial herb,which is mainly distributed in northeast area of China,it’s often used to treat digestive system diseases such as gastric ulcer(GU).However,the mechanism of its potential protective effects against GU remains unclear.AIM To investigate the protective effects of A.japonica on acetic acid-induced GU rats.METHODS The chemical constituents of A.japonica were determined by ultra performance liquid chromatography tandem mass spectrometry(UPLC-MS/MS)analysis.The rat model of GU was simulated by acetic acid method.The pathological changes of gastric tissues were evaluated by hematoxylin-eosin stain,the levels of epidermal growth factor(EGF),EGF receptor(EGFR),nuclear factor kappa-B(NF-κB),interleukin-1β(IL-1β),IL-10,Na^(+)-K^(+)-ATPase(NKA)in serum and gastric tissues were determined by enzyme-linked immunosorbent assay,and the mRNA expressions of EGFR,NF-κBp65,IkappaBalpha(IκBα)and Zonula Occludens-1(ZO-1)in gastric tissues were determined by real-time reverse transcription polymerase chain reaction,and the efficacy was observed.Then,plasma metabolomic analysis was performed by UPLC-MS/MS to screen the specific potential biomarkers,metabolic pathways and to explore the possible mechani-sms.RESULTS 48 chemical constituents were identified.Many of them have strong pharmacological activity,the results also revealed that A.japonica significantly improved the pathological damage of gastric tissues,increased the expression levels of IL-10,IκBαrelated to anti-inflammatory factors,decreased the expression levels of IL-1β,NF-κB,NF-κBp65,related to proinflammatory factors,restored the levels of factors about EGF,EGFR,ZO-1 associated with ulcer healing and the levels of factors about NKA associated with energy metabolism.Metabolomic analysis identified 10 potential differential metabolites and enriched 7 related metabolic pathways.CONCLUSION These findings contribute to the understanding of the potential mechanism of A.japonica to improve acetic acidinduced GU,and will be of great importance for the development and clinical application of natural drugs related to A.japonica.展开更多
[Objectives]The paper was to compare the effects of different initial processing methods on atractylodin content of Atractylodes chinensis.[Methods]The atractylodin content of A.chinensis obtained by different initial...[Objectives]The paper was to compare the effects of different initial processing methods on atractylodin content of Atractylodes chinensis.[Methods]The atractylodin content of A.chinensis obtained by different initial processing methods was determined by HPLC.The loss rate on drying was determined by weighing.[Results]In the study of drying methods,the atractylodin content varied significantly among different thicknesses of slices,and the overall content of the product with the slice thickness of 5 mm was higher.Among different drying methods,constant temperature vacuum drying and shade drying of 5 mm slice resulted in the highest content of atractylodin.In the experiment of root impacting,root impacting twice received the best effect,and there was no significant difference in the atractylosin content of A.chinensis between drying in the sun and drying in the shade after root impacting twice(P>0.05).[Conclusions]Constant temperature vacuum drying or drying in the shade with the slice thickness of 5 mm,and root impacting twice is the best initial processing method,which leads to high atractylodin content of A.chinensis and good quality of medicinal materials.展开更多
MXenes,the most recent addition to the 2D material family,have attracted significant attention owing to their distinctive characteristics,including high surface area,conductivity,surface characteristics,mechanical str...MXenes,the most recent addition to the 2D material family,have attracted significant attention owing to their distinctive characteristics,including high surface area,conductivity,surface characteristics,mechanical strength,etc.This review begins by presenting MXenes,providing insights into their structural characteristics,synthesis methods,and surface functional groups.The review covers a thorough analysis of MXene surface properties,including surface chemistry and termination group impacts.The properties of MXenes are influenced by their synthesis,which can be fluorine-based or fluorinedependent.Fluorine-based synthesis techniques involve etching with fluorine-based reagents,mainly including HF or LiF/HCl,while fluorine-free methods include electrochemical etching,chemical vapor deposition(CVD),alkaline etching,Lewis acid-based etching,etc.These techniques result in the emergence of functional groups such as-F,-O,-OH,-Cl,etc.on the MXenes surface,depending on the synthesis method used.Properties of MXenes,such as electrical conductivity,electronic properties,catalytic activity,magnetic properties,mechanical strength,and chemical and thermal stability,are examined,and the role of functional groups in determining these properties is explored.The review delves into the diverse applications of MXenes,encompassing supercapacitors,battery materials,hydrogen storage,fuel cells,electromagnetic interference(EMI) shielding,pollutant removal,water purification,flexible electronics,sensors,additive manufacturing,catalysis,biomedical and healthcare fields,etc.Finally,this article outlines the challenges and opportunities in the current and future development of MXenes research,addressing various aspects such as synthesis scalability,etching challenges,and multifunctionality,and exploring novel applications.The review concludes with future prospects and conclusions envisioning the impact of MXenes on future technologies and innovation.展开更多
Rechargeable lithium-sulfur(Li-S)batteries,featuring high energy density,low cost,and environmental friendliness,have been dubbed as one of the most promising candidates to replace current commercial rechargeable Li-i...Rechargeable lithium-sulfur(Li-S)batteries,featuring high energy density,low cost,and environmental friendliness,have been dubbed as one of the most promising candidates to replace current commercial rechargeable Li-ion batteries.However,their practical deployment has long been plagued by the infamous“shuttle effect”of soluble Li polysulfides(LiPSs)and the rampant growth of Li dendrites.Therefore,it is important to specifically elucidate the solvation structure in the Li-S system and systematically summarize the feasibility strategies that can simultaneously suppress the shuttle effect and the growth of Li dendrites for practical applications.This review attempts to achieve this goal.In this review,we first introduce the importance of developing Li-S batteries and highlight the key challenges.Then,we revisit the working principles of Li-S batteries and underscore the fundamental understanding of LiPSs.Next,we summarize some representative characterization techniques and theoretical calculations applied to characterize the solvation structure of LiPSs.Afterward,we overview feasible designing strategies that can simultaneously suppress the shuttle effect of soluble LiPSs and the growth of Li dendrites.Finally,we conclude and propose personal insights and perspectives on the future development of Li-S batteries.We envisage that this timely review can provide some inspiration to build better Li-S batteries for promoting practical applications.展开更多
Discharge plasmas, recognized as unique platforms for investigating the origins of chemical life, have garnered extensive interest for their potential to simulate prebiotic conditions. This paper embarks on a comprehe...Discharge plasmas, recognized as unique platforms for investigating the origins of chemical life, have garnered extensive interest for their potential to simulate prebiotic conditions. This paper embarks on a comprehensive overview of recent advancements in the plasma-enabled synthesis of life’s building blocks, charting the complex environmental parameters believed to have surrounded life’s inception. This discussion elaborates on the fundamental mechanisms of discharge plasmas and their likely role in fostering conditions necessary for the origin of life on early Earth. We consider a variety of chemical reactions facilitated by plasma, specifically the synthesis of vital organic molecules - amino acids, nucleobases, sugars, and lipids. Further, we delve into the impact of plasmas on prebiotic chemical evolution. We expect this review to open new horizons for future investigations in plasma-related prebiotic chemistry that could offer valuable insights for unraveling the mysteries of life's origin.展开更多
Water electrolysis poses a significant challenge for balancing catalytic activity and stability of oxygen evolution reaction(OER)electrocatalysts.In this study,we address this challenge by constructing asymmetric redo...Water electrolysis poses a significant challenge for balancing catalytic activity and stability of oxygen evolution reaction(OER)electrocatalysts.In this study,we address this challenge by constructing asymmetric redox chemistry through elaborate surface OO–Ru–OH and bulk Ru–O–Ni/Fe coordination moieties within single-atom Ru-decorated defective NiFe LDH nanosheets(Ru@d-NiFe LDH)in conjunction with strong metal-support interactions(SMSI).Rigorous spectroscopic characterization and theoretical calculations indicate that single-atom Ru can delocalize the O 2p electrons on the surface and optimize d-electron configurations of metal atoms in bulk through SMSI.The^(18)O isotope labeling experiment based on operando differential electrochemical mass spectrometry(DEMS),chemical probe experiments,and theoretical calculations confirm the encouraged surface lattice oxygen,stabilized bulk lattice oxygen,and enhanced adsorption of oxygen-containing intermediates for bulk metals in Ru@d-NiFe LDH,leading to asymmetric redox chemistry for OER.The Ru@d-NiFe LDH electrocatalyst exhibits exceptional performance with an overpotential of 230 mV to achieve 10 mA cm^(−2)and maintains high robustness under industrial current density.This approach for achieving asymmetric redox chemistry through SMSI presents a new avenue for developing high-performance electrocatalysts and instills confidence in its industrial applicability.展开更多
Since the D-band center theory was proposed,it has been widely used in the fields of surface chemistry by almost all researchers,due to its easy understanding,convenient operation and relative accuracy.However,with th...Since the D-band center theory was proposed,it has been widely used in the fields of surface chemistry by almost all researchers,due to its easy understanding,convenient operation and relative accuracy.However,with the continuous development of material systems and modification strategies,researchers have gradually found that D-band center theory is usually effective for large metal particle systems,but for small metal particle systems or semiconductors,such as single atom systems,the opposite conclusion to the D-band center theory is often obtained.To solve the issue above,here we propose a bonding and anti-bonding orbitals stable electron intensity difference(BASED)theory for surface chemistry.The newly-proposed BASED theory can not only successfully explain the abnormal phenomena of D-band center theory,but also exhibits a higher accuracy for prediction of adsorption energy and bond length of intermediates on active sites.Importantly,a new phenomenon of the spin transition state in the adsorption process is observed based on the BASED theory,where the active center atom usually yields an unstable high spin transition state to enhance its adsorption capability in the adsorption process of intermediates when their distance is about 2.5Å.In short,the BASED theory can be considered as a general principle to understand catalytic mechanism of intermediates on surfaces.展开更多
It is crucial to realize the point-of-care(POC)testing of harmful analytes,capa-ble of saving limited agricultural resources,assisting environmental remediation,ensuring food safety,and enabling early disease diagnosi...It is crucial to realize the point-of-care(POC)testing of harmful analytes,capa-ble of saving limited agricultural resources,assisting environmental remediation,ensuring food safety,and enabling early disease diagnosis.Compared with other conventional POC sensing strategies,aggregation-based analytical chemistry facil-itates the practical-oriented development of POC nanosensors by altering the aggregation status of nanoprobes through the action of multiple aggregation-induced“forces”originating from the targets.Herein,we have proceeded with a comprehensive review focusing on the aggregation-based analytical chemistry in POC nanosensors,covering aggregation-induced“forces”,aggregation-induced signal transductions,aggregation-induced POC nanosensing strategies,and their applications in biomolecular monitoring,food safety analysis,and environmental monitoring.Finally,challenges existing in practical applications have been fur-ther proposed to improve their sensing applications,and we expect our review can speed up the development of cost-effective,readily deployable,and time-efficient nanosensors through aggregation-based analytical chemistry.展开更多
The undesirable capacity loss after first cycle is universal among layered cathode materials,which results in the capacity and energy decay.The key to resolving this obstacle lies in understanding the effect and origi...The undesirable capacity loss after first cycle is universal among layered cathode materials,which results in the capacity and energy decay.The key to resolving this obstacle lies in understanding the effect and origin of specific active Li sites during discharge process.In this study,focusing on Ah-level pouch cells for reliability,an ultrahigh initial Coulombic efficiency(96.1%)is achieved in an archetypical Li-rich layered oxide material.Combining the structure and electrochemistry analysis,we demonstrate that the achievement of high-capacity reversibility is a kinetic effect,primarily related to the sluggish Li mobility during oxygen reduction.Activating oxygen reduction through small density would induce the oxygen framework contraction,which,according to Pauli repulsion,imposes a great repulsive force to hinder the transport of tetrahedral Li.The tetrahedral Li storage upon deep oxygen reduction is experimentally visualized and,more importantly,contributes to 6%Coulombic efficiency enhancement as well as 10%energy density improvement for pouch cells,which shows great potentials breaking through the capacity and energy limitation imposed by intercalation chemistry.展开更多
Physical chemistry experiments are an important branch of chemical experiments.In view of problems and shortcomings in physical chemistry experiment teaching of food quality and safety major in Chengdu University,the ...Physical chemistry experiments are an important branch of chemical experiments.In view of problems and shortcomings in physical chemistry experiment teaching of food quality and safety major in Chengdu University,the teaching methods of physical chemistry experiment course of food quality and safety major were explored and practiced,aiming to arouse students enthusiasm for experiments and cultivate their ability of independent learning,comprehensive thinking and independent problem solving.展开更多
Rechargeable magnesium batteries(RMBs),as a low-cost,high-safety and high-energy storage technology,have attracted tremendous attention in large-scale energy storage applications.However,the key anode/electrolyte inte...Rechargeable magnesium batteries(RMBs),as a low-cost,high-safety and high-energy storage technology,have attracted tremendous attention in large-scale energy storage applications.However,the key anode/electrolyte interfacial issues,including surface passivation,uneven Mg plating/stripping,and pulverization after cycling still result in a large overpotential,short cycling life,poor power density,and possible safety hazards of cells,severely impeding the commercial development of RMBs.In this review,a concise overview of recently advanced strategies to address these anode/electroyte interfacial issues is systematically classified and summarized.The design of magnesiophilic substrates,construction of artificial SEI layers,and modification of electrolyte are important and effective strategies to improve the uniformity/kinetics of Mg plating/stripping and achieve the stable anode/electrolyte interface.The key opportunities and challenges in this field are advisedly put forward,and the insights into future directions for stabilizing Mg metal anodes and the anode/electrolyte interface are highlighted.This review provides important references fordeveloping the high-performance and high-safety RMBs.展开更多
Integrating ideological and political theories teaching into the whole process of classroom teaching construction is a new requirement for implementing the fundamental task of cultivating people by virtue and playing ...Integrating ideological and political theories teaching into the whole process of classroom teaching construction is a new requirement for implementing the fundamental task of cultivating people by virtue and playing the role of collaborative education.In order to realize the seamless integration of inorganic and analytical chemistry courses and ideological and political education,this paper summarizes the current situation of ideological and political research on inorganic and analytical chemistry courses in three major databases in China(VIP,CNKI and Wanfang),and sorts out the knowledge points,ideological and political elements and educational goals according to the content of the course chapters,to provide a basic guarantee for the ideological and political education construction of the course.展开更多
P2/O3-type Ni/Mn-based layered oxides are promising cathode materials for sodium-ion batteries(SIBs)owing to their high energy density.However,exploring effective ways to enhance the synergy between the P2 and 03 phas...P2/O3-type Ni/Mn-based layered oxides are promising cathode materials for sodium-ion batteries(SIBs)owing to their high energy density.However,exploring effective ways to enhance the synergy between the P2 and 03 phases remains a necessity.Herein,we design a P2/O3-type Na_(0.76)Ni_(0.31)Zn_(0.07)Mn_(0.50)Ti_(0.12)0_(2)(NNZMT)with high chemical/electrochemical stability by enhancing the coupling between the two phases.For the first time,a unique Na*extraction is observed from a Na-rich O3 phase by a Na-poor P2 phase and systematically investigated.This process is facilitated by Zn^(2+)/Ti^(4+)dual doping and calcination condition regulation,allowing a higher Na*content in the P2 phase with larger Na^(+)transport channels and enhancing Na transport kinetics.Because of reduced Na^(+)in the O3 phase,which increases the difficulty of H^(+)/Na^(+) exchange,the hydrostability of the O3 phase in NNZMT is considerably improved.Furthermore,Zn^(2+)/Ti^(4+)presence in NNZMT synergistically regulates oxygen redox chemistry,which effectively suppresses O_(2)/CO_(2) gas release and electrolyte decomposition,and completely inhibits phase transitions above 4.0 V.As a result,NNZMT achieves a high discharge capacity of 144.8 mA h g^(-1) with a median voltage of 3.42 V at 20 mA g^(-1) and exhibits excellent cycling performance with a capacity retention of 77.3% for 1000 cycles at 2000 mA g^(-1).This study provides an effective strategy and new insights into the design of high-performance layered-oxide cathode materials with enhanced structure/interface stability forSIBs.展开更多
Groundwater serves as an important water source for residents in and around mining areas.To achieve scientific planning and efficient utilization of water resources in mining areas,it is essential to figure out the ch...Groundwater serves as an important water source for residents in and around mining areas.To achieve scientific planning and efficient utilization of water resources in mining areas,it is essential to figure out the chemical formation process and the ground water sulfur cycle that transpire after the coal mining activities.Based on studies of hydrochemistry and D,^(18)O-H_(2)O,^(34)S-SO_(4)isotopes,this study applied principal component analysis,ion ratio and other methods in its attempts to reveal the hydrogeochemical action and sulfur cycle in the subsidence area of Pingyu mining area.The study discovered that,in the studied area,precipitation provides the major supply of groundwater and the main water chemistry effects are dominated by oxidation dissolution of sulfide minerals as well as the dissolution of carbonate and silicate rocks.The sulfate in groundwater primarily originates from oxidation and dissolution of sulfide minerals in coal-bearing strata and human activities.The mixed sulfate formed by the oxidation of sulfide minerals and by human activities continuously recharges the groundwater,promoting the dissolution of carbonate rock and silicate rock in the process.展开更多
Ga-doped Li_(7)La_(3)Zr_(2)O_(12)(Ga-LLZO)has long been considered as a promising garnet-type electrolyte candidate for all-solid-state lithium metal batteries(ASSLBs)due to its high room temperature ionic conductivit...Ga-doped Li_(7)La_(3)Zr_(2)O_(12)(Ga-LLZO)has long been considered as a promising garnet-type electrolyte candidate for all-solid-state lithium metal batteries(ASSLBs)due to its high room temperature ionic conductivity.However,the typical synthesis of Ga-LLZO is usually accompanied by the formation of undesired LiGaO_(2) impurity phase that causes severe instability of the electrolyte in contact with molten Li metal during half/full cell assembly.In this study,we show that by simply engineering the defect chemistry of Ga-LLZO,namely,the lithium deficiency level,LiGaO_(2) impurity phase is effectively inhibited in the final synthetic product.Consequently,defect chemistry engineered Ga-LLZO exhibits excellent electrochemical stability against lithium metal,while its high room temperature ionic conductivity(~1.9×10^(-3)S·cm^(-1))is well reserved.The assembled Li/Ga-LLZO/Li symmetric cell has a superior critical current density of 0.9 mA·cm^(-2),and cycles stably for 500 hours at a current density of 0.3 mA·cm^(-2).This research facilitates the potential commercial applications of high performance Ga-LLZO solid electrolytes in ASSLBs.展开更多
First at all, it introduced the concept and the damages of continuous cropping obstacle. Then, it analyzed the causes of continuous cropping obstacles for Atractylodes macrocephala Koidz. In the end, in order to provi...First at all, it introduced the concept and the damages of continuous cropping obstacle. Then, it analyzed the causes of continuous cropping obstacles for Atractylodes macrocephala Koidz. In the end, in order to provide guidance for pro- moting sustainable development of Atractylodes macrocephala Koidz industry in Pingjiang County, it put forward some control methods for eliminating continuous cropping obstacles of Atractylodes macrocephala Koidz, including breeding varieties with high resistance; applying rotation cropping and intercropping reasonable; rational fertilization and soil disinfection; introducing antagonistic bacterial and eliminating au- tointoxication.展开更多
[Objective] This study was to explore the effect of three precursors on the accumulation of principal volatile oil constituents in tissue culture plantlets of Atractylodes lancea (Thunb.) DC. with the aim to provide...[Objective] This study was to explore the effect of three precursors on the accumulation of principal volatile oil constituents in tissue culture plantlets of Atractylodes lancea (Thunb.) DC. with the aim to provide references for the improvement of artificial cultivated A. lancea quality. [Method] Three precursors were added into the MS rooting medium for A. lancea tissue culture plantlets and the volatile oil was extracted by ultrasonication after cultured for several days. The content of atractylon, atractylol, β-eucalyptol and atractydin in the volatile oil were determined by using gas chromatography method. [Result] The addition of xylose, isoprene and tetrahydrofuran impacted the growth indicators, yield of volatile oil and relative percentage content of the four constituents of A. lancea tissue culture plantlets. In the 6 g/L xylose optimized medium, the atractylon and β-eucalyptol content reached up to 4.23% and 56.34%, respectively, 1.41% and 1.66% higher than the control; although the addition of isoprene into medium raised the atractylon content, the accumulation of total volatile oil was inhibited that it decreased by 23.67%, 31.06% and 7.10% to the control; for the tetrahydrofuran optimized medium, the content of atractylon, atractylol and atractydin all increased, and the total volatile oil content increased by 49.97% to the control when the concentration of tetrahydrofuran was 0.07 g/L. [Conclusion] The addition of xylose and tetrahydrofuran promoted the accumulation of principal constituents of the volatile oil, whereas the addition of isoprene inhibited the accumulation.展开更多
基金This work was financially supported by National Nature Science Foundation of China(81973284)Scientific Research Foundation of the Education Department of Liaoning Province(LJKZ0944).
文摘Atractylodes lancea(called Cangzhu in China)is a medicinal plant that has long been used as tonic agent in various ethno-medical systems in East Asia,especially in China,for the treatment of gastrointestinal dysfunction,cancer,osteoporosis,obesity and fetal irritability.We used the TCMSP database to search for the main active ingredients and traditional Chinese medicine targets of Atractylodes macrocephala.There are a total of 38 related articles,of which 27 are closely related to chemical composition and activity.This study reviews the chemical components and pharmacological effects of A.lancea,aiming to provide reference for its further research and development.
基金Supported by National Natural Science Foundation of China,No.81973478Liaoning Revitalization Talents Program,China,No.XLYC2002004Natural Science Foundation of Liaoning Province,China,No.2019-ZD-0443.
文摘BACKGROUND Atractylodes japonica Koidz.ex Kitam.(A.japonica,Chinese name:Guan-Cangzhu,Japanese name:Byaku-jutsu),a perennial herb,which is mainly distributed in northeast area of China,it’s often used to treat digestive system diseases such as gastric ulcer(GU).However,the mechanism of its potential protective effects against GU remains unclear.AIM To investigate the protective effects of A.japonica on acetic acid-induced GU rats.METHODS The chemical constituents of A.japonica were determined by ultra performance liquid chromatography tandem mass spectrometry(UPLC-MS/MS)analysis.The rat model of GU was simulated by acetic acid method.The pathological changes of gastric tissues were evaluated by hematoxylin-eosin stain,the levels of epidermal growth factor(EGF),EGF receptor(EGFR),nuclear factor kappa-B(NF-κB),interleukin-1β(IL-1β),IL-10,Na^(+)-K^(+)-ATPase(NKA)in serum and gastric tissues were determined by enzyme-linked immunosorbent assay,and the mRNA expressions of EGFR,NF-κBp65,IkappaBalpha(IκBα)and Zonula Occludens-1(ZO-1)in gastric tissues were determined by real-time reverse transcription polymerase chain reaction,and the efficacy was observed.Then,plasma metabolomic analysis was performed by UPLC-MS/MS to screen the specific potential biomarkers,metabolic pathways and to explore the possible mechani-sms.RESULTS 48 chemical constituents were identified.Many of them have strong pharmacological activity,the results also revealed that A.japonica significantly improved the pathological damage of gastric tissues,increased the expression levels of IL-10,IκBαrelated to anti-inflammatory factors,decreased the expression levels of IL-1β,NF-κB,NF-κBp65,related to proinflammatory factors,restored the levels of factors about EGF,EGFR,ZO-1 associated with ulcer healing and the levels of factors about NKA associated with energy metabolism.Metabolomic analysis identified 10 potential differential metabolites and enriched 7 related metabolic pathways.CONCLUSION These findings contribute to the understanding of the potential mechanism of A.japonica to improve acetic acidinduced GU,and will be of great importance for the development and clinical application of natural drugs related to A.japonica.
基金Supported by Science and Technology Project for the Construction of Chengde National Sustainable Development Agenda Innovation Demonstration Zone(202007F004)Science and Technology Business Project of Hebei Provincial Department of Science and Technology(V1623138472760)。
文摘[Objectives]The paper was to compare the effects of different initial processing methods on atractylodin content of Atractylodes chinensis.[Methods]The atractylodin content of A.chinensis obtained by different initial processing methods was determined by HPLC.The loss rate on drying was determined by weighing.[Results]In the study of drying methods,the atractylodin content varied significantly among different thicknesses of slices,and the overall content of the product with the slice thickness of 5 mm was higher.Among different drying methods,constant temperature vacuum drying and shade drying of 5 mm slice resulted in the highest content of atractylodin.In the experiment of root impacting,root impacting twice received the best effect,and there was no significant difference in the atractylosin content of A.chinensis between drying in the sun and drying in the shade after root impacting twice(P>0.05).[Conclusions]Constant temperature vacuum drying or drying in the shade with the slice thickness of 5 mm,and root impacting twice is the best initial processing method,which leads to high atractylodin content of A.chinensis and good quality of medicinal materials.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(NRF-2020R1A6A1A03043435 and 2020R1A2C1099862)supported by the Korea Institute for Advancement of Technology(KIAT)grant funded by the Korean Government(MOTIE)(P0012451,The Competency Development Program for Industry Specialist)。
文摘MXenes,the most recent addition to the 2D material family,have attracted significant attention owing to their distinctive characteristics,including high surface area,conductivity,surface characteristics,mechanical strength,etc.This review begins by presenting MXenes,providing insights into their structural characteristics,synthesis methods,and surface functional groups.The review covers a thorough analysis of MXene surface properties,including surface chemistry and termination group impacts.The properties of MXenes are influenced by their synthesis,which can be fluorine-based or fluorinedependent.Fluorine-based synthesis techniques involve etching with fluorine-based reagents,mainly including HF or LiF/HCl,while fluorine-free methods include electrochemical etching,chemical vapor deposition(CVD),alkaline etching,Lewis acid-based etching,etc.These techniques result in the emergence of functional groups such as-F,-O,-OH,-Cl,etc.on the MXenes surface,depending on the synthesis method used.Properties of MXenes,such as electrical conductivity,electronic properties,catalytic activity,magnetic properties,mechanical strength,and chemical and thermal stability,are examined,and the role of functional groups in determining these properties is explored.The review delves into the diverse applications of MXenes,encompassing supercapacitors,battery materials,hydrogen storage,fuel cells,electromagnetic interference(EMI) shielding,pollutant removal,water purification,flexible electronics,sensors,additive manufacturing,catalysis,biomedical and healthcare fields,etc.Finally,this article outlines the challenges and opportunities in the current and future development of MXenes research,addressing various aspects such as synthesis scalability,etching challenges,and multifunctionality,and exploring novel applications.The review concludes with future prospects and conclusions envisioning the impact of MXenes on future technologies and innovation.
基金financially supported by the National Natural Science Foundation of China(51972064 and 52222315)
文摘Rechargeable lithium-sulfur(Li-S)batteries,featuring high energy density,low cost,and environmental friendliness,have been dubbed as one of the most promising candidates to replace current commercial rechargeable Li-ion batteries.However,their practical deployment has long been plagued by the infamous“shuttle effect”of soluble Li polysulfides(LiPSs)and the rampant growth of Li dendrites.Therefore,it is important to specifically elucidate the solvation structure in the Li-S system and systematically summarize the feasibility strategies that can simultaneously suppress the shuttle effect and the growth of Li dendrites for practical applications.This review attempts to achieve this goal.In this review,we first introduce the importance of developing Li-S batteries and highlight the key challenges.Then,we revisit the working principles of Li-S batteries and underscore the fundamental understanding of LiPSs.Next,we summarize some representative characterization techniques and theoretical calculations applied to characterize the solvation structure of LiPSs.Afterward,we overview feasible designing strategies that can simultaneously suppress the shuttle effect of soluble LiPSs and the growth of Li dendrites.Finally,we conclude and propose personal insights and perspectives on the future development of Li-S batteries.We envisage that this timely review can provide some inspiration to build better Li-S batteries for promoting practical applications.
基金National Natural Science Foundation of China General Project(52377160)National Natural Science Foundation of China National Young Talents Project(GYKP010)+1 种基金Shaanxi Provincial Natural Science Program(2023-JC-YB-425)Xi′an Jiaotong University Young Top Talents Program.
文摘Discharge plasmas, recognized as unique platforms for investigating the origins of chemical life, have garnered extensive interest for their potential to simulate prebiotic conditions. This paper embarks on a comprehensive overview of recent advancements in the plasma-enabled synthesis of life’s building blocks, charting the complex environmental parameters believed to have surrounded life’s inception. This discussion elaborates on the fundamental mechanisms of discharge plasmas and their likely role in fostering conditions necessary for the origin of life on early Earth. We consider a variety of chemical reactions facilitated by plasma, specifically the synthesis of vital organic molecules - amino acids, nucleobases, sugars, and lipids. Further, we delve into the impact of plasmas on prebiotic chemical evolution. We expect this review to open new horizons for future investigations in plasma-related prebiotic chemistry that could offer valuable insights for unraveling the mysteries of life's origin.
基金supported by the Guangdong Basic and Applied Basic Research Foundation(2021B1515120072)the Natural Science Foundation of China(22279096 and T2241003)the Fundamental Research Funds for the Central Universities(WUT:2023IVA094).
文摘Water electrolysis poses a significant challenge for balancing catalytic activity and stability of oxygen evolution reaction(OER)electrocatalysts.In this study,we address this challenge by constructing asymmetric redox chemistry through elaborate surface OO–Ru–OH and bulk Ru–O–Ni/Fe coordination moieties within single-atom Ru-decorated defective NiFe LDH nanosheets(Ru@d-NiFe LDH)in conjunction with strong metal-support interactions(SMSI).Rigorous spectroscopic characterization and theoretical calculations indicate that single-atom Ru can delocalize the O 2p electrons on the surface and optimize d-electron configurations of metal atoms in bulk through SMSI.The^(18)O isotope labeling experiment based on operando differential electrochemical mass spectrometry(DEMS),chemical probe experiments,and theoretical calculations confirm the encouraged surface lattice oxygen,stabilized bulk lattice oxygen,and enhanced adsorption of oxygen-containing intermediates for bulk metals in Ru@d-NiFe LDH,leading to asymmetric redox chemistry for OER.The Ru@d-NiFe LDH electrocatalyst exhibits exceptional performance with an overpotential of 230 mV to achieve 10 mA cm^(−2)and maintains high robustness under industrial current density.This approach for achieving asymmetric redox chemistry through SMSI presents a new avenue for developing high-performance electrocatalysts and instills confidence in its industrial applicability.
文摘Since the D-band center theory was proposed,it has been widely used in the fields of surface chemistry by almost all researchers,due to its easy understanding,convenient operation and relative accuracy.However,with the continuous development of material systems and modification strategies,researchers have gradually found that D-band center theory is usually effective for large metal particle systems,but for small metal particle systems or semiconductors,such as single atom systems,the opposite conclusion to the D-band center theory is often obtained.To solve the issue above,here we propose a bonding and anti-bonding orbitals stable electron intensity difference(BASED)theory for surface chemistry.The newly-proposed BASED theory can not only successfully explain the abnormal phenomena of D-band center theory,but also exhibits a higher accuracy for prediction of adsorption energy and bond length of intermediates on active sites.Importantly,a new phenomenon of the spin transition state in the adsorption process is observed based on the BASED theory,where the active center atom usually yields an unstable high spin transition state to enhance its adsorption capability in the adsorption process of intermediates when their distance is about 2.5Å.In short,the BASED theory can be considered as a general principle to understand catalytic mechanism of intermediates on surfaces.
基金National Key Research and Development Program of China,Grant/Award Numbers:2023YFE0103300,2021YFD1700300National Natural Science Foundation of China,Grant/Award Number:22176047+2 种基金innovative Talent Promotion Program—Science&Technology Innovation Team of Shaanxi,Grant/Award Number:2023-CX-TD-55Qinchuangyuan“Scientist+Engineer”team of Shaanxi,Grant/Award Number:2022KXJ-070Qinghai Special Project of Innovation Platform for Basic Conditions of Scientific Research of China,Grant/Award Number:2022-ZJ-Y18。
文摘It is crucial to realize the point-of-care(POC)testing of harmful analytes,capa-ble of saving limited agricultural resources,assisting environmental remediation,ensuring food safety,and enabling early disease diagnosis.Compared with other conventional POC sensing strategies,aggregation-based analytical chemistry facil-itates the practical-oriented development of POC nanosensors by altering the aggregation status of nanoprobes through the action of multiple aggregation-induced“forces”originating from the targets.Herein,we have proceeded with a comprehensive review focusing on the aggregation-based analytical chemistry in POC nanosensors,covering aggregation-induced“forces”,aggregation-induced signal transductions,aggregation-induced POC nanosensing strategies,and their applications in biomolecular monitoring,food safety analysis,and environmental monitoring.Finally,challenges existing in practical applications have been fur-ther proposed to improve their sensing applications,and we expect our review can speed up the development of cost-effective,readily deployable,and time-efficient nanosensors through aggregation-based analytical chemistry.
基金financially supported by the National Natural Science Foundation of China(Grant No.52272253)“Lingyan”Research and Development Plan of Zhejiang Province(Grant No.2022C01071)+2 种基金Low Cost Cathode Material(Grant No.TC220H06P)the Natural Science Foundation of Ningbo(Grant No.202003N4030)the Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.2022299)
文摘The undesirable capacity loss after first cycle is universal among layered cathode materials,which results in the capacity and energy decay.The key to resolving this obstacle lies in understanding the effect and origin of specific active Li sites during discharge process.In this study,focusing on Ah-level pouch cells for reliability,an ultrahigh initial Coulombic efficiency(96.1%)is achieved in an archetypical Li-rich layered oxide material.Combining the structure and electrochemistry analysis,we demonstrate that the achievement of high-capacity reversibility is a kinetic effect,primarily related to the sluggish Li mobility during oxygen reduction.Activating oxygen reduction through small density would induce the oxygen framework contraction,which,according to Pauli repulsion,imposes a great repulsive force to hinder the transport of tetrahedral Li.The tetrahedral Li storage upon deep oxygen reduction is experimentally visualized and,more importantly,contributes to 6%Coulombic efficiency enhancement as well as 10%energy density improvement for pouch cells,which shows great potentials breaking through the capacity and energy limitation imposed by intercalation chemistry.
文摘Physical chemistry experiments are an important branch of chemical experiments.In view of problems and shortcomings in physical chemistry experiment teaching of food quality and safety major in Chengdu University,the teaching methods of physical chemistry experiment course of food quality and safety major were explored and practiced,aiming to arouse students enthusiasm for experiments and cultivate their ability of independent learning,comprehensive thinking and independent problem solving.
基金supported by the National Key R&D Program of China(No.2023YFB3809500)the National Natural Science Foundation of China(No.U23A20555,52202211)+3 种基金the Ninth Young Elite Scientists Sponsorship Program by CAST(2023QNRC001)the Chongqing Technology Innovation and Application Development Project(No.CSTB2022TIAD-KPX0028)the Fundamental Research Funds for the Central Universities(2023CDJXY-018)the Venture&Innovation Support Program for Chongqing Overseas Returnees(cx2022119,cx2023087).
文摘Rechargeable magnesium batteries(RMBs),as a low-cost,high-safety and high-energy storage technology,have attracted tremendous attention in large-scale energy storage applications.However,the key anode/electrolyte interfacial issues,including surface passivation,uneven Mg plating/stripping,and pulverization after cycling still result in a large overpotential,short cycling life,poor power density,and possible safety hazards of cells,severely impeding the commercial development of RMBs.In this review,a concise overview of recently advanced strategies to address these anode/electroyte interfacial issues is systematically classified and summarized.The design of magnesiophilic substrates,construction of artificial SEI layers,and modification of electrolyte are important and effective strategies to improve the uniformity/kinetics of Mg plating/stripping and achieve the stable anode/electrolyte interface.The key opportunities and challenges in this field are advisedly put forward,and the insights into future directions for stabilizing Mg metal anodes and the anode/electrolyte interface are highlighted.This review provides important references fordeveloping the high-performance and high-safety RMBs.
基金Supported by 2020 Teaching Reform Research Project of Pingdingshan University(2020-JY05)School-level Ideological and Political Demonstration Course of Pingdingshan University in 2023-Ecological Engineering+1 种基金Science and Technology Research Project of Henan Provincial Department of Science and Technology(212102110189)High-level Talent Start-up Fund Project of Pingdingshan University(PXY-BSQD-202001).
文摘Integrating ideological and political theories teaching into the whole process of classroom teaching construction is a new requirement for implementing the fundamental task of cultivating people by virtue and playing the role of collaborative education.In order to realize the seamless integration of inorganic and analytical chemistry courses and ideological and political education,this paper summarizes the current situation of ideological and political research on inorganic and analytical chemistry courses in three major databases in China(VIP,CNKI and Wanfang),and sorts out the knowledge points,ideological and political elements and educational goals according to the content of the course chapters,to provide a basic guarantee for the ideological and political education construction of the course.
基金supported by the National Natural Science Foundation of China (22169002)the Chongzuo Key Research and Development Program of China (20220603)the Counterpart Aid Project for Discipline Construction from Guangxi University(2023M02)
文摘P2/O3-type Ni/Mn-based layered oxides are promising cathode materials for sodium-ion batteries(SIBs)owing to their high energy density.However,exploring effective ways to enhance the synergy between the P2 and 03 phases remains a necessity.Herein,we design a P2/O3-type Na_(0.76)Ni_(0.31)Zn_(0.07)Mn_(0.50)Ti_(0.12)0_(2)(NNZMT)with high chemical/electrochemical stability by enhancing the coupling between the two phases.For the first time,a unique Na*extraction is observed from a Na-rich O3 phase by a Na-poor P2 phase and systematically investigated.This process is facilitated by Zn^(2+)/Ti^(4+)dual doping and calcination condition regulation,allowing a higher Na*content in the P2 phase with larger Na^(+)transport channels and enhancing Na transport kinetics.Because of reduced Na^(+)in the O3 phase,which increases the difficulty of H^(+)/Na^(+) exchange,the hydrostability of the O3 phase in NNZMT is considerably improved.Furthermore,Zn^(2+)/Ti^(4+)presence in NNZMT synergistically regulates oxygen redox chemistry,which effectively suppresses O_(2)/CO_(2) gas release and electrolyte decomposition,and completely inhibits phase transitions above 4.0 V.As a result,NNZMT achieves a high discharge capacity of 144.8 mA h g^(-1) with a median voltage of 3.42 V at 20 mA g^(-1) and exhibits excellent cycling performance with a capacity retention of 77.3% for 1000 cycles at 2000 mA g^(-1).This study provides an effective strategy and new insights into the design of high-performance layered-oxide cathode materials with enhanced structure/interface stability forSIBs.
基金supported by Geological Research Project of the Construction Management Bureau of the Middle Route of the South to North Water Diversion Project(ZXJ/HN/YW/GC-2020037)。
文摘Groundwater serves as an important water source for residents in and around mining areas.To achieve scientific planning and efficient utilization of water resources in mining areas,it is essential to figure out the chemical formation process and the ground water sulfur cycle that transpire after the coal mining activities.Based on studies of hydrochemistry and D,^(18)O-H_(2)O,^(34)S-SO_(4)isotopes,this study applied principal component analysis,ion ratio and other methods in its attempts to reveal the hydrogeochemical action and sulfur cycle in the subsidence area of Pingyu mining area.The study discovered that,in the studied area,precipitation provides the major supply of groundwater and the main water chemistry effects are dominated by oxidation dissolution of sulfide minerals as well as the dissolution of carbonate and silicate rocks.The sulfate in groundwater primarily originates from oxidation and dissolution of sulfide minerals in coal-bearing strata and human activities.The mixed sulfate formed by the oxidation of sulfide minerals and by human activities continuously recharges the groundwater,promoting the dissolution of carbonate rock and silicate rock in the process.
基金financially supported by the National Natural Science Foundation of China (Grant No.52171221)the National Key Research and Development Program of China (Grant No.2019YFA0704900)。
文摘Ga-doped Li_(7)La_(3)Zr_(2)O_(12)(Ga-LLZO)has long been considered as a promising garnet-type electrolyte candidate for all-solid-state lithium metal batteries(ASSLBs)due to its high room temperature ionic conductivity.However,the typical synthesis of Ga-LLZO is usually accompanied by the formation of undesired LiGaO_(2) impurity phase that causes severe instability of the electrolyte in contact with molten Li metal during half/full cell assembly.In this study,we show that by simply engineering the defect chemistry of Ga-LLZO,namely,the lithium deficiency level,LiGaO_(2) impurity phase is effectively inhibited in the final synthetic product.Consequently,defect chemistry engineered Ga-LLZO exhibits excellent electrochemical stability against lithium metal,while its high room temperature ionic conductivity(~1.9×10^(-3)S·cm^(-1))is well reserved.The assembled Li/Ga-LLZO/Li symmetric cell has a superior critical current density of 0.9 mA·cm^(-2),and cycles stably for 500 hours at a current density of 0.3 mA·cm^(-2).This research facilitates the potential commercial applications of high performance Ga-LLZO solid electrolytes in ASSLBs.
文摘First at all, it introduced the concept and the damages of continuous cropping obstacle. Then, it analyzed the causes of continuous cropping obstacles for Atractylodes macrocephala Koidz. In the end, in order to provide guidance for pro- moting sustainable development of Atractylodes macrocephala Koidz industry in Pingjiang County, it put forward some control methods for eliminating continuous cropping obstacles of Atractylodes macrocephala Koidz, including breeding varieties with high resistance; applying rotation cropping and intercropping reasonable; rational fertilization and soil disinfection; introducing antagonistic bacterial and eliminating au- tointoxication.
基金Supported by the National Natural Science Foundation of China(31070443)the National Science Foundation of China for Talent Training in Basic Research(J1103507)+1 种基金The Priority Academic Program Development of Jiangsu Higher Education Institutions,Innovation Promotion Project of Nanjing Municipal Science and Technology Commissions(201105058)the Practice and Innovation Training Program for the Students of Nanjing Normal University~~
文摘[Objective] This study was to explore the effect of three precursors on the accumulation of principal volatile oil constituents in tissue culture plantlets of Atractylodes lancea (Thunb.) DC. with the aim to provide references for the improvement of artificial cultivated A. lancea quality. [Method] Three precursors were added into the MS rooting medium for A. lancea tissue culture plantlets and the volatile oil was extracted by ultrasonication after cultured for several days. The content of atractylon, atractylol, β-eucalyptol and atractydin in the volatile oil were determined by using gas chromatography method. [Result] The addition of xylose, isoprene and tetrahydrofuran impacted the growth indicators, yield of volatile oil and relative percentage content of the four constituents of A. lancea tissue culture plantlets. In the 6 g/L xylose optimized medium, the atractylon and β-eucalyptol content reached up to 4.23% and 56.34%, respectively, 1.41% and 1.66% higher than the control; although the addition of isoprene into medium raised the atractylon content, the accumulation of total volatile oil was inhibited that it decreased by 23.67%, 31.06% and 7.10% to the control; for the tetrahydrofuran optimized medium, the content of atractylon, atractylol and atractydin all increased, and the total volatile oil content increased by 49.97% to the control when the concentration of tetrahydrofuran was 0.07 g/L. [Conclusion] The addition of xylose and tetrahydrofuran promoted the accumulation of principal constituents of the volatile oil, whereas the addition of isoprene inhibited the accumulation.