Attitude pursuit guidance law is suitable for low cost missiles.A strap-down seeker is used to achieve this guidance law.The additional angles of attack or sideslip caused by wind and by control system are considered ...Attitude pursuit guidance law is suitable for low cost missiles.A strap-down seeker is used to achieve this guidance law.The additional angles of attack or sideslip caused by wind and by control system are considered as two disturbing factors which make attitude pursuit law impossible.Therefore,general attitude pursuit guidance law did not account for this two disturbing factors,because with those disturbing factors,it is difficult to apply.To solve the problem,the principle of strap-down seeker detecting target is investigated,the mathematical control model is established,then a modified attitude pursuit guidance law which employs the angular correction for those two disturbing factors is presented.It is proved that the modified attitude pursuit guidance law is appropriated to both in the presence of the additional angle of attack or sideslip via the simulations with the mathematical control model and Monte-Carlo method.展开更多
This paper considers the simultaneous attack problem of multiple missiles against a maneuvering target. Different from most of the existing literature in which the simultaneous attack problem is formulated as a consen...This paper considers the simultaneous attack problem of multiple missiles against a maneuvering target. Different from most of the existing literature in which the simultaneous attack problem is formulated as a consensus problem of missiles' time-to-go estimates, this paper formulates it as the consensus problem of missiles' ranges-to-go. Based on this strategy, novel distributed guidance laws are proposed to solve the simultaneous attack problem with the target of unknown maneuverability.Adaptive control method is introduced to estimate the upper bound of the target's acceleration. The effectiveness of the proposed guidance laws is verified both theoretically and numerically.展开更多
文摘Attitude pursuit guidance law is suitable for low cost missiles.A strap-down seeker is used to achieve this guidance law.The additional angles of attack or sideslip caused by wind and by control system are considered as two disturbing factors which make attitude pursuit law impossible.Therefore,general attitude pursuit guidance law did not account for this two disturbing factors,because with those disturbing factors,it is difficult to apply.To solve the problem,the principle of strap-down seeker detecting target is investigated,the mathematical control model is established,then a modified attitude pursuit guidance law which employs the angular correction for those two disturbing factors is presented.It is proved that the modified attitude pursuit guidance law is appropriated to both in the presence of the additional angle of attack or sideslip via the simulations with the mathematical control model and Monte-Carlo method.
基金supported by the National Natural Science Foundation of China under Grant Nos.61473005,11332001,and 61471242the Research Project Fund under Grant No.17-163-11-ZT-003-018-01+2 种基金the Air Force Advance Research Fund under Grant No.303020503the Joint Fund of Equipment development and Aerospace Science and Technology under Grant No.6141B0624050101the National Defense Basic Scientific Research Program(Major)of China
文摘This paper considers the simultaneous attack problem of multiple missiles against a maneuvering target. Different from most of the existing literature in which the simultaneous attack problem is formulated as a consensus problem of missiles' time-to-go estimates, this paper formulates it as the consensus problem of missiles' ranges-to-go. Based on this strategy, novel distributed guidance laws are proposed to solve the simultaneous attack problem with the target of unknown maneuverability.Adaptive control method is introduced to estimate the upper bound of the target's acceleration. The effectiveness of the proposed guidance laws is verified both theoretically and numerically.