Human body communication(HBC) is a promising near-field communication(NFC) method emerging in recent years. But existing theoretical models of HBC are too simple to simulate the wave propagation on human body. In this...Human body communication(HBC) is a promising near-field communication(NFC) method emerging in recent years. But existing theoretical models of HBC are too simple to simulate the wave propagation on human body. In this work, in order to clarify the propagation mechanism of electromagnetic wave on human body, a surface waveguide HBC theoretical model based on stratified media cylinder is presented. A numerical model analyzed by finite element method(FEM) is used for comparing and validating the theoretical model. Finally, results of theoretical and numerical models from 80 MHz to 200 MHz agree fairly well, which means that theoretical model can characterize accurate propagation mechanism of HBC signal. Meanwhile, attenuation constants derived from two kinds of models are within the range from 1.64 to 3.37, so that HBC signal can propagate effectively on human body. The propagation mechanism derived from the theoretical model is useful to provide design information for the transmitter and the modeling of the propagation channel in HBC.展开更多
In this paper, argon arc plasma is chosen as an example to study the absorption characteristics of arc plasma in the infrared region. Firstly, the phase and the attenuation constants are deduced for the given temperat...In this paper, argon arc plasma is chosen as an example to study the absorption characteristics of arc plasma in the infrared region. Firstly, the phase and the attenuation constants are deduced for the given temperature, pressure and probe wavelength regions. Based on those constants, the dependence of the attenuation constant on the temperature and pressure in the vicinity of a certain probe wavelength is found. Then, theoretical analysis and discussion are conducted. Maximal absorption occurs at the position where the contributions of neutral particles and electrons come to a balance in a physical point of view, which may provide some measures to take for decreasing or controlling the plasma absorption of electromagnetic waves.展开更多
In this paper, equivalent surface impedance boundary condition (ESIBC), which takes fractal parameters (D, G) into SIBC, is implemented in the 4-component 2-D compact finite difference frequency domain (2-D CFDFD...In this paper, equivalent surface impedance boundary condition (ESIBC), which takes fractal parameters (D, G) into SIBC, is implemented in the 4-component 2-D compact finite difference frequency domain (2-D CFDFD) method to an- alyze the propagation characteristics of lossy circular waveguide with fractal rough surface based on Weierstrass-Mandelbrot (W-M) function. Fractal parameters’ effects on attenuation constant are presented in the 3 mm lossy circular waveguide, and the attenuation constants of the first three modes vary monotonically with scaling constant (G) and decrease as the fractal dimension (D) increasing.展开更多
基金Project(2009ZX01031-001-007-2)supported by the National Science and Technology Major Project,China
文摘Human body communication(HBC) is a promising near-field communication(NFC) method emerging in recent years. But existing theoretical models of HBC are too simple to simulate the wave propagation on human body. In this work, in order to clarify the propagation mechanism of electromagnetic wave on human body, a surface waveguide HBC theoretical model based on stratified media cylinder is presented. A numerical model analyzed by finite element method(FEM) is used for comparing and validating the theoretical model. Finally, results of theoretical and numerical models from 80 MHz to 200 MHz agree fairly well, which means that theoretical model can characterize accurate propagation mechanism of HBC signal. Meanwhile, attenuation constants derived from two kinds of models are within the range from 1.64 to 3.37, so that HBC signal can propagate effectively on human body. The propagation mechanism derived from the theoretical model is useful to provide design information for the transmitter and the modeling of the propagation channel in HBC.
基金supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 10804052)the Postgraduate Innovation Foundation of Jiangsu Provincethe Key Postgraduate Planting Plan of Nanjing University of Science and Technology,China
文摘In this paper, argon arc plasma is chosen as an example to study the absorption characteristics of arc plasma in the infrared region. Firstly, the phase and the attenuation constants are deduced for the given temperature, pressure and probe wavelength regions. Based on those constants, the dependence of the attenuation constant on the temperature and pressure in the vicinity of a certain probe wavelength is found. Then, theoretical analysis and discussion are conducted. Maximal absorption occurs at the position where the contributions of neutral particles and electrons come to a balance in a physical point of view, which may provide some measures to take for decreasing or controlling the plasma absorption of electromagnetic waves.
文摘In this paper, equivalent surface impedance boundary condition (ESIBC), which takes fractal parameters (D, G) into SIBC, is implemented in the 4-component 2-D compact finite difference frequency domain (2-D CFDFD) method to an- alyze the propagation characteristics of lossy circular waveguide with fractal rough surface based on Weierstrass-Mandelbrot (W-M) function. Fractal parameters’ effects on attenuation constant are presented in the 3 mm lossy circular waveguide, and the attenuation constants of the first three modes vary monotonically with scaling constant (G) and decrease as the fractal dimension (D) increasing.