One paper in a preceding issue of this journal has introduced the Bayesian Ying-Yang(BYY)harmony learning from a perspective of problem solving,parameter learning,and model selection.In a complementary role,the paper ...One paper in a preceding issue of this journal has introduced the Bayesian Ying-Yang(BYY)harmony learning from a perspective of problem solving,parameter learning,and model selection.In a complementary role,the paper provides further insights from another perspective that a co-dimensional matrix pair(shortly co-dim matrix pair)forms a building unit and a hierarchy of such building units sets up the BYY system.The BYY harmony learning is re-examined via exploring the nature of a co-dim matrix pair,which leads to improved learning performance with refined model selection criteria and a modified mechanism that coordinates automatic model selection and sparse learning.Besides updating typical algorithms of factor analysis(FA),binary FA(BFA),binary matrix factorization(BMF),and nonnegative matrix factorization(NMF)to share such a mechanism,we are also led to(a)a new parametrization that embeds a de-noise nature to Gaussian mixture and local FA(LFA);(b)an alternative formulation of graph Laplacian based linear manifold learning;(c)a codecomposition of data and covariance for learning regularization and data integration;and(d)a co-dim matrix pair based generalization of temporal FA and state space model.Moreover,with help of a co-dim matrix pair in Hadamard product,we are led to a semi-supervised formation for regression analysis and a semi-blind learning formation for temporal FA and state space model.Furthermore,we address that these advances provide with new tools for network biology studies,including learning transcriptional regulatory,Protein-Protein Interaction network alignment,and network integration.展开更多
基金supported by the General Research Fund from Research Grant Council of Hong Kong(Project No.CUHK4180/10E)the National Basic Research Program of China(973 Program)(No.2009CB825404).
文摘One paper in a preceding issue of this journal has introduced the Bayesian Ying-Yang(BYY)harmony learning from a perspective of problem solving,parameter learning,and model selection.In a complementary role,the paper provides further insights from another perspective that a co-dimensional matrix pair(shortly co-dim matrix pair)forms a building unit and a hierarchy of such building units sets up the BYY system.The BYY harmony learning is re-examined via exploring the nature of a co-dim matrix pair,which leads to improved learning performance with refined model selection criteria and a modified mechanism that coordinates automatic model selection and sparse learning.Besides updating typical algorithms of factor analysis(FA),binary FA(BFA),binary matrix factorization(BMF),and nonnegative matrix factorization(NMF)to share such a mechanism,we are also led to(a)a new parametrization that embeds a de-noise nature to Gaussian mixture and local FA(LFA);(b)an alternative formulation of graph Laplacian based linear manifold learning;(c)a codecomposition of data and covariance for learning regularization and data integration;and(d)a co-dim matrix pair based generalization of temporal FA and state space model.Moreover,with help of a co-dim matrix pair in Hadamard product,we are led to a semi-supervised formation for regression analysis and a semi-blind learning formation for temporal FA and state space model.Furthermore,we address that these advances provide with new tools for network biology studies,including learning transcriptional regulatory,Protein-Protein Interaction network alignment,and network integration.