期刊文献+
共找到71篇文章
< 1 2 4 >
每页显示 20 50 100
Improved Plasmonic Hot‑Electron Capture in Au Nanoparticle/Polymeric Carbon Nitride by Pt Single Atoms for Broad‑Spectrum Photocatalytic H_(2)Evolution 被引量:2
1
作者 Manyi Gao Fenyang Tian +3 位作者 Xin Zhang Zhaoyu Chen Weiwei Yang Yongsheng Yu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第8期423-435,共13页
ABSTRACT Rationally designing broad-spectrum photocatalysts to harvest whole visible-light region photons and enhance solar energy conversion is a“holy grail”for researchers,but is still a challenging issue.Herein,b... ABSTRACT Rationally designing broad-spectrum photocatalysts to harvest whole visible-light region photons and enhance solar energy conversion is a“holy grail”for researchers,but is still a challenging issue.Herein,based on the common polymeric carbon nitride(PCN),a hybrid co-catalysts system comprising plasmonic Au nanoparticles(NPs)and atomically dispersed Pt single atoms(PtSAs)with different functions was constructed to address this challenge.For the dual co-catalysts decorated PCN(PtSAs–Au_(2.5)/PCN),the PCN is photoexcited to generate electrons under UV and short-wavelength visible light,and the synergetic Au NPs and PtSAs not only accelerate charge separation and transfer though Schottky junctions and metal-support bond but also act as the co-catalysts for H_(2) evolution.Furthermore,the Au NPs absorb long-wavelength visible light owing to its localized surface plasmon resonance,and the adjacent PtSAs trap the plasmonic hot-electrons for H_(2) evolution via direct electron transfer effect.Consequently,the PtSAs–Au_(2.5)/PCN exhibits excellent broad-spectrum photocatalytic H_(2) evolution activity with the H_(2) evolution rate of 8.8 mmol g^(−1) h^(−1) at 420 nm and 264μmol g^(−1) h^(−1) at 550 nm,much higher than that of Au_(2.5)/PCN and PtSAs–PCN,respectively.This work provides a new strategy to design broad-spectrum photocatalysts for energy conversion reaction. 展开更多
关键词 Polymeric carbon nitride au nanoparticles Pt single atoms Photocatalytic H2 evolution Broad-spectrum photocatalysts
下载PDF
Novel Au nanoparticles-inlaid titanium paper for PEM water electrolysis with enhanced interfacial electrical conductivity 被引量:2
2
作者 Yue Liu Shaobo Huang +3 位作者 Shanlong Peng Heng Zhang Lifan Wang Xindong Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第5期1090-1098,共9页
Proton-exchange membrane water electrolysis(PEM WE)is a particularly promising technology for renewable hydrogen produc-tion.However,the excessive passivation of the gas diffusion layer(GDL)will seriously affect the h... Proton-exchange membrane water electrolysis(PEM WE)is a particularly promising technology for renewable hydrogen produc-tion.However,the excessive passivation of the gas diffusion layer(GDL)will seriously affect the high surface-contact resistance and result in energy losses.Thus,a mechanism for improving the conductivity and interface stability of the GDL is an urgent issue.In this work,we have prepared a hydrophilic and corrosion resistant conductive composite protective coating.The polydopamine(PDA)film on the Ti surface,which was obtained via the solution oxidation method,ensured that neither micropores nor pinholes existed in the final hybrid coatings.In-situ reduced gold nanoparticles(AuNPs)improved the conductivity to achieve the desired interfacial contact resistance and further enhanced the corrosion resistance.The surface composition of the treated samples was investigated using scanning electron microscopy(SEM),transmis-sion electron microscopy(TEM),X-ray diffraction(XRD),and Fourier transform infrared spectroscopy(FTIR).The results indicated that the optimized reaction conditions included a pH value of 3 of HAuCl_(4) solution with PDA deposition(48 h)on papers and revealed the lowest con-tact resistance(0.5 mΩ·cm^(2))and corrosion resistance(0.001μA·cm^(−2))in a 0.5 M H_(2)SO_(4)+2 ppm F−solution(1.7 V vs.RHE)among all the modified specimens,where RHE represents reversible hydrogen electrode.These findings indicated that the Au-PDA coating is very appropriate for the modification of Ti GDLs in PEM WE systems. 展开更多
关键词 water electrolysis proton-exchange membrane hydrogen energy titanium paper diffusion layer au nanoparticles inlaid titanium gold–polydopamine nanocomposite
下载PDF
Transient competition between photocatalysis and carrier recombination in TiO_2 nanotube film loaded with Au nanoparticles 被引量:1
3
作者 邵珠峰 杨延强 +1 位作者 刘树田 王强 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第9期298-305,共8页
Highly ordered TiO2 nanotube array (TNA) films are fabricated by using an anodic oxidation method. Au nanoparticles (NPs) films are decorated onto the top of TNA films with the aid of ion-sputtering and thermal an... Highly ordered TiO2 nanotube array (TNA) films are fabricated by using an anodic oxidation method. Au nanoparticles (NPs) films are decorated onto the top of TNA films with the aid of ion-sputtering and thermal annealing. An enhanced photocatalytic activity under ultraviolet C (UVC, 266 nm) light irradiation is obtained compared with that of the pristine TNA, which is shown by the steady-state photoluminescence (PL) spectra. Furthermore, a distinct blue shift in the nanosecond time-resolved transient photoluminescence (NTRT-PL) spectra is observed. Such a phenomenon could be well explained by considering the competition between the surface photocatalytic process and the recombination of the photo-generated carriers. The enhanced UV photocatalytic activities of the Au-TNA composite are evaluated through photo-degradation of methyl orange (MO) in an aqueous solution with ultraviolet-visible absorption spectrometry. Our current work may provide a simple strategy to synthesize defect-related composite photocatalytic devices. 展开更多
关键词 TiO2 nanotube array film au nanoparticles oxygen vacancies photocatalytic activity
下载PDF
The enhancement of 21.2%-power conversion efficiency in polymer photovoltaic cells by using mixed Au nanoparticles with a wide absorption spectrum of 400 nm–1000 nm
4
作者 郝敬昱 徐颖 +4 位作者 张玉佩 陈淑芬 李兴鳌 汪联辉 黄维 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第4期283-289,共7页
Au nanoparticles (NPs) mixed with a majority of bone-like, rod, and cube shapes and a minority of irregu- lar spheres, which can generate a wide absorption spectrum of 400 nm-1000 nm and three localized surface plas... Au nanoparticles (NPs) mixed with a majority of bone-like, rod, and cube shapes and a minority of irregu- lar spheres, which can generate a wide absorption spectrum of 400 nm-1000 nm and three localized surface plas- mon resonance peaks, respectively, at 525, 575, and 775 nrn, are introduced into the hole extraction layer poly(3,4- ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) to improve optical-to-electrical conversion performances in polymer photovoltaic ceils. With the doping concentration of Au NPs optimized, the cell performance is significantly improved: the short-circuit current density and power conversion efficiency of the poly(3-hexylthiophene): [6,6]-phenyl- C60-butyric acid methyl ester cell are increased by 20.54% and 21.2%, reaching 11.15 mA.cm-2 and 4.23%. The variations of optical, electrical, and morphology with the incorporation of Au NPs in the cells are analyzed in detail, and our results demonstrate that the cell performance improvement can be attributed to a synergistic reaction, including: 1) both the local- ized surface plasmon resonanceand scattering-induced absorption enhancement of the active layer, 2) Au doping-induced hole transport/extraction ability enhancement, and 3) large interface roughness-induced efficient exciton dissociation and hole collection. 展开更多
关键词 au nanoparticle polymer solar cells localized surface plasmon resonance SCATTERING hole transport
下载PDF
Microwave Synthesis of Au Nanoparticles with the System of AuCl_4-CH_3CH_2OH
5
作者 Zhi Liang JIANG Zhong Wei FENG Xing Can SHEN 《Chinese Chemical Letters》 SCIE CAS CSCD 2001年第6期551-554,共4页
The Au nanoparticles has been prepared by microwave high-pressure procedure with alcohol as the reducing agent. The color of colloidal Au nanoparticles is blue-violet. The maximum absorption spectrum of colloidal Au i... The Au nanoparticles has been prepared by microwave high-pressure procedure with alcohol as the reducing agent. The color of colloidal Au nanoparticles is blue-violet. The maximum absorption spectrum of colloidal Au is at 580 nm, and the resonance scattering peak is at 580 nm. Using this method, the colloidal Au of long-time stability can be prepared Simply and quickly. 展开更多
关键词 Microwave high-pressure ALCOHOL au nanoparticles resonance scattering spectroscopy(RSS)
下载PDF
Preparation and Catalytic Performance of Microporous Polymer/Au Nanoparticles Composite Microspheres
6
作者 GUO Chun ZHANG Lijuan +3 位作者 ZHAO Yan LI Mengyuan WANG Xiaotao ZHANG Gaowen 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第2期464-468,共5页
Polystyrene crosslinked microspheres were prepared by soap-free emulsion polymerization using styrene (St) and divinylbenzene (DVB) as monomers;then,the microporous structure was knitted by the Friedel-Crafts alkylati... Polystyrene crosslinked microspheres were prepared by soap-free emulsion polymerization using styrene (St) and divinylbenzene (DVB) as monomers;then,the microporous structure was knitted by the Friedel-Crafts alkylation reaction,and the Au nanoparticles (AuNPs) were loaded into the pores through thermal reduction,to obtain AuNPs/ hyper-crosslinked microporous polymer composite microspheres.SEM and particle-size test results show that the microspheres show good monodispersity.The micropore analysis indicates that the specific surface area and the pore volume of the microporous polymer microspheres decrease with increasing DVB content,and when the DVB content is 0.1%,the specific surface area reaches a maximum of 1 174.6 m2/g.After loading AuNPs,the specific surface area and the amount of micropores of the composite microspheres decrease obviously.The results of XRD and XPS analyses suggest that HAuCl4 is reduced to AuNPs.The composite microspheres show a good catalytic performance for the reduction catalyst of 4-nitrophenol. 展开更多
关键词 microporous polystyrene microspheres au nanoparticles hyper-crosslinking catalytic performance
下载PDF
Highly Sensitive SnO_2 Nanorods Ethanol Sensors with the Adsorption of Au Nanoparticles
7
作者 LI Jin WANG Yi +1 位作者 MA Guang LI Yin'e 《贵金属》 CAS CSCD 北大核心 2012年第A01期107-110,共4页
Flower-liked SnO_2 nanorods were prepared by a hydrothermal method.The sensors were fabricated using SnO_2 nanorods adsorption of Au nanoparticles through sputtering deposition.We found that the loading of a small amo... Flower-liked SnO_2 nanorods were prepared by a hydrothermal method.The sensors were fabricated using SnO_2 nanorods adsorption of Au nanoparticles through sputtering deposition.We found that the loading of a small amount of Au nanoparticles on the surface of SnO_2 nanorods can effectively enhance and functionalize the gas sensing performance of SnO_2 nanorods,which due to the Au adsorption make the surface-depletion effect more pronounced.Such enhanced surface depletion increases the sensitivity,lowers the operation temperature and decreases the response time. 展开更多
关键词 SnO2 nanorods ethanol sensors au nanoparticles
下载PDF
Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ)
8
作者 Guorong Li Yijing Wu +2 位作者 Chao Zhong Yixin Yang Zian Lin 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第5期392-396,共5页
Targeted construction of new covalent organic frameworks(COFs)with specific purposes and rationalities to build colorimetric assay platform for environmental pollutant monitoring have attracted increasing interest.How... Targeted construction of new covalent organic frameworks(COFs)with specific purposes and rationalities to build colorimetric assay platform for environmental pollutant monitoring have attracted increasing interest.However,it is still challenging due to lack of available coordination sites inside COFs pores and only a slight bonding ability for anchoring metal.In this work,a two-dimensional(2D)COFs(termed as Tz-COF)with high crystallinity,excellent chemical stability,and abundant sulfur coordination in its skeletons was synthesized and used for the confined growth of Au NPs.It was found that the Au NPs showed significant dispersibility for the support of Tz-COF.The proposed Tz-COF@Au NPs possessed outstanding Hg^(2+)-activated peroxidase-like activity benefited from physicochemical properties of gold amalgam and synergistic effect between COFs and Au NPs to oxidize chromogenic substrate.Based on highly efficient activity and distinctive color evolution,the strategy for detecting Hg^(2+)was developed and successfully applied to determine the content of Hg^(2+)in real environmental samples.This work manifests that a potential strategy to establish a colorimetric assay platform for environmental pollutant monitoring based on the targeted manufacturing of novel COFs with specific functions. 展开更多
关键词 Covalent organic frameworks THIAZOLE Sulfur coordination au nanoparticles Hg^(2+)-activated peroxidase-like activity
原文传递
Unravelling the role of the combined effect of metallic charge transfer channel and SiO_(x) overlayer in the Zr/Si-Fe_(2)O_(3):Au:SiO_(x) nanorod arrays to boost photoelectrochemical water splitting
9
作者 Tae Sik Koh Periyasamy Anushkkaran +5 位作者 Love Kumar Dhandole Mahadeo A.Mahadik Weon-Sik Chae Hyun Hwi Lee Sun Hee Choi Jum Suk Jang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期370-379,I0009,共11页
Hematite(α-Fe_(2)O_(3)) based photoanodes have been extensively studied due to various intriguing features that make them viable candidates for a photoelectrochemical(PEC) water splitting photoanode.Herein,we propose... Hematite(α-Fe_(2)O_(3)) based photoanodes have been extensively studied due to various intriguing features that make them viable candidates for a photoelectrochemical(PEC) water splitting photoanode.Herein,we propose a Zr-doped Fe_(2)O_(3) photoanode decorated with facilely spin-coated Au nanoparticles(NPs) and microwave-assisted attached Si co-doping in conjunction with a SiO_(x) overlayer that displayed a remarkable photocurrent density of 2.01 mA/cm^(2) at 1.23 V vs.RHE.The kinetic dynamics at the photoelectrode/-electrolyte interface was examined by employing systematic electrochemical investigations.The Au NPs played a dual role in increasing PEC water splitting.First,the Schottky interface that was formed between Au NPs and Zr-Fe_(2)O_(3) lectrode ensured the prevention of electron flow from the photoanode to the metal,increasing the number of available charges as well as suppressing surface charge recombination.Second,Au extracted photoholes from the bulk of the Zr-Fe_(2)O_(3) and transported them to the outer SiO_(x) overlayer,while the SiO_(x) overlayer efficiently collected the photoholes and promoted the hole injection into the electrolyte.Further,Si co-doping enhanced bulk conductivity by reducing bulk charge transfer resistance and improving charge carrier density.This study outlines a technique to design a metallic charge transfer path with an overlayer for solar energy conversion. 展开更多
关键词 HEMATITE Microwave attachment au nanoparticles SiO_(x) overlayer Water splitting
下载PDF
Nano-Au-decorated hierarchical porous cobalt sulfide derived from ZIF-67 toward optimized oxygen evolution catalysis:Important roles of microstructures and electronic modulation
10
作者 Hongyu Gong Guanliang Sun +6 位作者 Wenhua Shi Dongwei Li Xiangjun Zheng Huan Shi Xiu Liang Ruizhi Yang Changzhou Yuan 《Carbon Energy》 SCIE EI CAS CSCD 2024年第5期1-14,共14页
Enhancing both the number of active sites available and the intrinsic activity of Co-based electrocatalysts simultaneously is a desirable goal.Herein,a ZIF-67-derived hierarchical porous cobalt sulfide decorated by Au... Enhancing both the number of active sites available and the intrinsic activity of Co-based electrocatalysts simultaneously is a desirable goal.Herein,a ZIF-67-derived hierarchical porous cobalt sulfide decorated by Au nanoparticles(NPs)(denoted as HP-Au@CoxSy@ZIF-67)hybrid is synthesized by low-temperature sulfuration treatment.The well-defined macroporous-mesoporous-microporous structure is obtained based on the combination of polystyrene spheres,as-formed CoxSy nanosheets,and ZIF-67 frameworks.This novel three-dimensional hierarchical structure significantly enlarges the three-phase interfaces,accelerating the mass transfer and exposing the active centers for oxygen evolution reaction.The electronic structure of Co is modulated by Au through charge transfer,and a series of experiments,together with theoretical analysis,is performed to ascertain the electronic modulation of Co by Au.Meanwhile,HP-Au@CoxSy@ZIF-67 catalysts with different amounts of Au were synthesized,wherein Au and NaBH4 reductant result in an interesting“competition effect”to regulate the relative ratio of Co^(2+)/Co^(3+),and moderate Au assists the electrochemical performance to reach the highest value.Consequently,the optimized HP-Au@CoxSy@ZIF-67 exhibits a low overpotential of 340 mV at 10 mA cm^(-2)and a Tafel slope of 42 mV dec-1 for OER in 0.1 M aqueous KOH,enabling efficient water splitting and Zn-air battery performance.The work here highlights the pivotal roles of both microstructural and electronic modulation in enhancing electrocatalytic activity and presents a feasible strategy for designing and optimizing advanced electrocatalysts. 展开更多
关键词 au nanoparticles cobalt sulfide electronic modulation hierarchical porous structure oxygen evolution reaction
下载PDF
ROS Balance Autoregulating Core-Shell CeO_(2)@ZIF-8/Au Nanoplatform for Wound Repair
11
作者 Xi Zhou Quan Zhou +12 位作者 Zhaozhi He Yi Xiao Yan Liu Zhuohang Huang Yaoji Sun Jiawei Wang Zhengdong Zhao Xiaozhou Liu Bin Zhou Lei Ren Yu Sun Zhiwei Chen Xingcai Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期341-361,共21页
Reactive oxygen species(ROS)plays important roles in living organisms.While ROS is a double-edged sword,which can eliminate drug-resistant bacteria,but excessive levels can cause oxidative damage to cells.A core–shel... Reactive oxygen species(ROS)plays important roles in living organisms.While ROS is a double-edged sword,which can eliminate drug-resistant bacteria,but excessive levels can cause oxidative damage to cells.A core–shell nanozyme,Ce O_(2)@ZIF-8/Au,has been crafted,spontaneously activating both ROS generating and scavenging functions,achieving the multifaceted functions of eliminating bacteria,reducing inflammation,and promoting wound healing.The Au Nanoparticles(NPs)on the shell exhibit high-efficiency peroxidase-like activity,producing ROS to kill bacteria.Meanwhile,the encapsulation of Ce O_(2) core within ZIF-8 provides a seal for temporarily limiting the superoxide dismutase and catalase-like activities of Ce O_(2) nanoparticles.Subsequently,as the ZIF-8 structure decomposes in the acidic microenvironment,the Ce O_(2) core is gradually released,exerting its ROS scavenging activity to eliminate excess ROS produced by the Au NPs.These two functions automatically and continuously regulate the balance of ROS levels,ultimately achieving the function of killing bacteria,reducing inflammation,and promoting wound healing.Such innovative ROS spontaneous regulators hold immense potential for revolutionizing the field of antibacterial agents and therapies. 展开更多
关键词 Metal-organic framework(MOF) Reactive oxygen species(ROS) Cerium dioxide au nanoparticles Wound healing
下载PDF
A Facile Synthesis of Monodisperse Au Nanoparticles and Their Catalysis of CO Oxidation 被引量:11
12
作者 Sheng Peng Youngmin Lee +3 位作者 Chao Wang Hongfeng Yin Sheng Dai Shouheng Sun 《Nano Research》 SCIE EI CSCD 2008年第3期229-234,共6页
Monodisperse Au nanoparticles(NPs)have been synthesized at room temperature via a burst nucleation of Au upon injection of the reducing agent t-butylamine-borane complex into a 1,2,3,4-tetrahydronaphthalene solution o... Monodisperse Au nanoparticles(NPs)have been synthesized at room temperature via a burst nucleation of Au upon injection of the reducing agent t-butylamine-borane complex into a 1,2,3,4-tetrahydronaphthalene solution of HAuCl4·3H2O in the presence of oleylamine.The as-synthesized Au NPs show size-dependent surface plasmonic properties between 520 and 530 nm.They adopt an icosahedral shape and are polycrystalline with multiple-twinned structures.When deposited on a graphitized porous carbon support,the NPs are highly active for CO oxidation,showing 100%CO conversion at-45°C. 展开更多
关键词 nanoparticle synthesis au nanoparticles CATALYSIS CO oxidation
原文传递
Plasmonic Au nanoparticles supported on both sides of Ti02 hollow spheres for maximising photocatalytic activity under visible light 被引量:5
13
作者 Jianwei Lu Lan Lan +2 位作者 Xiaoteng Terence Liu Na Wang Xiaolei Fan 《Frontiers of Chemical Science and Engineering》 SCIE EI CAS CSCD 2019年第4期665-671,共7页
A strategy of intensifying the visible light harvesting ability of anatase Ti02 hollow spheres(HSs)was developed,in which both sides of Ti02 HSs were utilised for stabilising Au nanoparticles(NPs)through the sacrifici... A strategy of intensifying the visible light harvesting ability of anatase Ti02 hollow spheres(HSs)was developed,in which both sides of Ti02 HSs were utilised for stabilising Au nanoparticles(NPs)through the sacrificial templating method and convex surface-induced confinement.The composite structure of single Au NP yolk-Ti02 shell-Au NPs,denoted as Au@Au(Ti02,was rendered and confirmed by the transmission electron microscopy analysis.Au@Au(Ti02 showed enhanced photocatalytic activity in the degradation of methylene blue and phenol in aqueous phase under visible light surpassing that of other reference materials such as Au(Ti02 by 77%and Au@P25 by 52%,respectively,in phenol degradation. 展开更多
关键词 Ti02 hollow spheres plasmonic au nanoparticles CONFINEMENT visible light photocatalytic degradation
原文传递
Fluorescence enhancement of acridine orange in a water solution by Au nanoparticles 被引量:6
14
作者 ZHENG HaiRong XU LiangMin +3 位作者 ZHANG ZhengLong DONG Jun CHEN ShuTang ZHANG XiaoLing 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2010年第10期1799-1804,共6页
The surface enhanced fluorescence effect of acridine orange fluorophore in the proximity of Au nanoparticles has been investigated experimentally in the system of aqueous solution.Significant enhancement of the fluore... The surface enhanced fluorescence effect of acridine orange fluorophore in the proximity of Au nanoparticles has been investigated experimentally in the system of aqueous solution.Significant enhancement of the fluorescence intensity was observed when the system was excited with 532 nm or 442 nm CW lasers.The influence of the distances between neighboring Au particles as well as that between the fluorophore molecules and the Au surface were explored experimentally.The results demonstrated that a compact distribution of metallic particles was able to produce stronger fluorescence enhancement.Proper separation between the fluorophore molecules and the metal surface was favorable for a better enhancement. 展开更多
关键词 surface enhanced fluorescence local field enhancement acridine orange hydrophilic au nanoparticle
原文传递
Green-chemistry Compatible Approach to TiO_2-supported PdAu Bimetallic Nanoparticles for Solvent-free 1-Phenylethanol Oxidation under Mild Conditions 被引量:6
15
作者 Jian-Bing Chang Chang-Hai Liu +3 位作者 Jie Liu Yu-Yan Zhou Xu Gao Sui-Dong Wang 《Nano-Micro Letters》 SCIE EI CAS 2015年第3期307-315,共9页
Ti O2-supported Pd Au bimetallic nanoparticles(NPs) with small size and good dispersity were prepared by the room-temperature ionic liquid-assisted bimetal sputtering, which is simple, environmentally friendly, and fr... Ti O2-supported Pd Au bimetallic nanoparticles(NPs) with small size and good dispersity were prepared by the room-temperature ionic liquid-assisted bimetal sputtering, which is simple, environmentally friendly, and free of additives and byproducts. Pd/Au atomic ratio can be tuned by controlling the sputtering conditions simply. High catalytic activity was found in Pd Au–NPs–Ti O2 hybrids for solvent-free selective oxidation of 1-phenylethanol using O2 as the oxidant at the low temperature of 50 °C and low pressure of 1 atm. It was found that Pd/Au ratio strongly affected the catalytical activity, and the highest conversion of about 35 % and turnover frequency of about 421 h-1were achieved at 1:1 of Pd/Au atomic ratio. The synergistic effect in Pd Au NPs was also discussed based on the comprehensive characterization results.The present approach may offer an alternative platform for future development of green-chemistry compatible bimetallic nanocatalysts. 展开更多
关键词 Pd au nanoparticles Ti O2nanosupport Electronic structure
下载PDF
Determination of Hydrocortisone in Cosmetics by CdSe/CdS Quantum Dots-Based Fluoroimmunoassay Using Magnetic Fe304/Au Nanoparticles as Solid Carriers 被引量:2
16
作者 Wang, Xiuling Wei, Lu +1 位作者 Tao, Guanhong Dai, Long 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2011年第3期587-591,共5页
This work demonstrated the feasibility of detecting hydrocortisone in cosmetics using a novel CdSe/CdS quan- tum dots-based competitive fluoroimmunoassay with magnetic core/shell Fe3Oa/Au nanoparticles (MCFN) as sol... This work demonstrated the feasibility of detecting hydrocortisone in cosmetics using a novel CdSe/CdS quan- tum dots-based competitive fluoroimmunoassay with magnetic core/shell Fe3Oa/Au nanoparticles (MCFN) as solid carriers. Hydrocortisone antigen was labeled with the synthesized core/shell CdSe/CdS quantum dots (QDs) to form the antigen-QDs conjugate. Meanwhile, hydrocortisone antibody was incubated with MCFN and the immobilized antibody was obtained. The immobilized antibody was then mixed sequentially with hydrocortisone and a slightly excess amount of the QDs-labeled hydrocortisone antigen, allowing their competition for binding with the antibody immobilized on MCFN. The bound hydrocortisone and the antigen-QDs conjugates on MCFN were removed subsequently after the mixture was applied to a magnetic force. The analyte concentration was obtained by measuring the fluorescence intensity of the unbound hydrocortisone antigen-QDs conjugates. The proposed method was characterized by simplicity, rapidity, and high sensitivity with a wide linear working range of 0.5 to 15000 pg·mL^-1 and a low detection limit of 0.5 pg.mL^- 1. The proposed method was successfully applied to the determination of hydrocortisone in cosmetics with satisfactory results. 展开更多
关键词 hydrocortisone FLUOROIMMUNOASSAY CdSe/CdS quantum dots magnetic core/shell Fe3O/au nanoparticles
原文传递
Electroless deposition of Au nanoparticles on reduced graphene oxide/polyimide film for electrochemical detection of hydroquinone and catechol 被引量:1
17
作者 Xuan SHEN Xiaohong XIA +1 位作者 Yongling DU Chunming WANG 《Frontiers of Materials Science》 SCIE CSCD 2017年第3期262-270,共9页
An electrochemical sensor for determination of hydroquinone (HQ) and catechol (CC) was developed using Au nanoparticles (AuNPs) fabricated on reduced graphene oxide/polyimide (PIIRGO) film by electroless depos... An electrochemical sensor for determination of hydroquinone (HQ) and catechol (CC) was developed using Au nanoparticles (AuNPs) fabricated on reduced graphene oxide/polyimide (PIIRGO) film by electroless deposition. The electrochemical behaviors of HQ and CC at PIIRGO-AuNPs electrode were investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Under the optimized condition, the current responses at PI/RGO-AuNPs electrode were linear over ranges from 1 to 654 mol/L for HQ and from 2 to 1289 mol/L for CC, with the detection limits of 0.09 and 0.2 mollL, respectively. The proposed electrode exhibited good reproducibility, stability and selectivity. In addition, the proposed electrode was successfully applied in the determination of HQ and CC in tap water and the Yellow River samples. 展开更多
关键词 ELECTROLESS au nanoparticles HYDROQUINONE CATECHOL SENSOR
原文传递
Crystallinity engineering of Au nanoparticles on graphene for in situ SERS monitoring of Fenton-like reaction 被引量:1
18
作者 Danni Guo Lixia Zhao Hui Zhang 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第3期1263-1266,共4页
Fabrication of multifunctional nanoplatform to in situ monitor Fenton reaction is of vital importance to probe the underlying reaction process and design high-performance catalyst. Herein, a hybrid catalyst comprising... Fabrication of multifunctional nanoplatform to in situ monitor Fenton reaction is of vital importance to probe the underlying reaction process and design high-performance catalyst. Herein, a hybrid catalyst comprising of single-crystalline Au nanoparticles (SC Au NPs) on reduced graphene oxide (RGO) sheet was prepared, which not only exhibited an excellent ^(1)O_(2) mediated Fenton-like catalytic activity in promoting rhodamine 6G (R6G) degradation by activating H_(2)O_(2), but also displayed a sensitive surface-enhanced Raman spectroscopy (SERS) detection performance to R6G with a linear response range from 1.0×10^(-8) mol/L to 1.0×10^(-5) mol/L thus providing a powerful and versatile nanoplatform for in situ SERS monitoring Fenton-like catalytic reaction. The integration of catalytic and SERS activities into a single nanostructure are expected to provide great potentials for practical applications in environmental catalysis. 展开更多
关键词 au nanoparticle Crystallinity engineering Fenton-like reaction SERS monitoring Environmental remediation
原文传递
Microwave-assisted synthesis of ultrafine Au nanoparticles immobilized on MOF-199 in high loading as efficient catalysts for a three-component coupling reaction 被引量:4
19
作者 Yan Jiang Xin Zhang +5 位作者 Xiaoping Dai Wen Zhang Qiang Sheng Hongying Zhuo Yun Xiao Hai Wang 《Nano Research》 SCIE EI CAS CSCD 2017年第3期876-889,共14页
Controlled integration of ultrafine metal nanoparticles (MNPs) and metal- organic frameworks (MOFs) has drawn much attention due to their unique physical and chemical properties. However, the development of a one-... Controlled integration of ultrafine metal nanoparticles (MNPs) and metal- organic frameworks (MOFs) has drawn much attention due to their unique physical and chemical properties. However, the development of a one-step strategy for preparing ultrafine MNPs within MOFs still remains a great challenge. Herein, a facile synthetic approach toward the abovementioned composites was developed. In contrast to the conventional approach, these hybrids were prepared by the direct mixing of metal and MOF precursors in the reaction solution assisted by microwave irradiation. Impressively, the Au/MOF-199 composite with uniformly distributed ultrafine Au nanoparticles could be fabricated in only two minutes, and the Au loading could be increased up to a level of 5.13%. The multifunctional Au/MOF-199 catalysts exhibited high turnover numbers (TONs) and turnover frequencies (TOFs) in the three-component coupling reaction of formaldehyde, phenylacetylene, and piperidine (AB-coupling). Owing to the confinement effect of MOF-199, the 5.13%Au/MOF-199 catalyst could be recycled for five runs without serious loss of activity, with no obvious aggregation of Au NPs detected. 展开更多
关键词 MOF-199 ultrafine au nanoparticles(NPs) high loading microwave irradiation AS-coupling
原文传递
Au nanoparticles decorated graphene/nickel foam nanocomposite for sensitive detection of hydrogen peroxide 被引量:2
20
作者 Xiaojuan Wang Xinli Guo +7 位作者 Jian Chen Chuang Ge Hongyi Zhang Yuanyuan Liu Li Zhao Yao Zhang Zengmei Wang Litao Sun 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2017年第3期246-250,共5页
The Au nanoparticles decorated graphene(AuNPs@Gr)/nickel foam(Gr/NiF) nanocomposite(AuNPs@Gr/NiF) was prepared by chemical vapor deposition followed by electrophoretic deposition of AuNPs on Gr/NiF. The morpholo... The Au nanoparticles decorated graphene(AuNPs@Gr)/nickel foam(Gr/NiF) nanocomposite(AuNPs@Gr/NiF) was prepared by chemical vapor deposition followed by electrophoretic deposition of AuNPs on Gr/NiF. The morphology, microstructure and sensing performance of the as-prepared AuNPs@Gr/NiF nanocomposite were characterized and measured, respectively by scanning electron microscope, transmission electron microscope, ultraviolet visible spectroscopy and chemical workstation. The asprepared AuNPs@Gr/NiF nanocomposite was used as the electrode to construct a chemical sensor for the detection of hydrogen peroxide(H2O2). The results showed that the AuNPs distributed homogenously and stably on the surface of Gr/NiF. The chemical sensor exhibits a sensitive and selective performance to the detection of H2O2. 展开更多
关键词 au nanoparticles Graphene Nickel foam Nanocomposite Hydrogen peroxide(H2O2)
原文传递
上一页 1 2 4 下一页 到第
使用帮助 返回顶部