Au-Ag alloy nanostars based flexible paper surface enhanced Raman spectroscopy sensors were fabricated through simple nanostar coating on regular office paper,and the surface enhanced Raman spectroscopy detection perf...Au-Ag alloy nanostars based flexible paper surface enhanced Raman spectroscopy sensors were fabricated through simple nanostar coating on regular office paper,and the surface enhanced Raman spectroscopy detection performances were investigated using crystal violet dye analyte.Au-Ag nanostars with sharp tips were synthesized via metal ions reduction method.Transmission electron microscope images,X-Ray diffraction pattern and energy dispersive spectroscopy elemental mapping confirmed the nanostar geometry and Au/Ag components of the nanostructure.UV-Vis-NIR absorption spectrum shows wide local surface plasmon resonance induced optical extinction.In addition,finite-difference time-domain simulation shows much stronger electromagnetic field from nanostars than from sphere nanoparticle.The effect of coating layer on Raman signal intensities was discussed,and optimized 5-layer coating with best Raman signal was obtained.The Au-Ag nanostatrs homogeneously distribute on paper fiber surface.The detection limit is 10-10 M,and the relationship between analyte concentrations and Raman signal intensities shows well linear,for potential quantitative analysis.The calculated enhancement factor is 4.795×10^(6).The flexible paper surface enhanced Raman spectroscopy sensors could be applied for trace chemical and biology molecule detection.展开更多
The evolution of microstructure during hot deformation is key to achieving good mechanical properties in aluminum alloys.We have developed a cellular automaton(CA) based model to simulate the microstructural evolution...The evolution of microstructure during hot deformation is key to achieving good mechanical properties in aluminum alloys.We have developed a cellular automaton(CA) based model to simulate the microstructural evolution in 7075 aluminum alloy during hot deformation.Isothermal compression tests were conducted to obtain material parameters for 7075 aluminum alloy,leading to the establishment of models for dislocation density,nucleation of recrystallized grains,and grain growth.Integrating these aspects with grain topological deformation,our CA model effectively predicts flow stress,dynamic recrystallization(DRX) volume fraction,and average grain size under diverse deformation conditions.A systematic comparison was made between electron back scattered diffraction(EBSD) maps and CA model simulated under different deformation temperatures(573 to 723 K),strain rates(0.001 to 1 s^(-1)),and strain amounts(30% to 70%).These analyses indicate that large strain,high temperature,and low strain rate facilitate dynamic recrystallization and grain refinement.The results from the CA model show good accuracy and predictive capability,with experimental error within 10%.展开更多
Compared to conventional electrocatalytic water splitting,electrocatalytic ethanol oxidation reaction(EOR)along with hydrogen production is considered a more energy-efficient strategy.Herein,we prepared a type of nove...Compared to conventional electrocatalytic water splitting,electrocatalytic ethanol oxidation reaction(EOR)along with hydrogen production is considered a more energy-efficient strategy.Herein,we prepared a type of novel quaternary alloy catalyst(PtAuCuNi@NF)that exhibits excellent activity for EOR(0.215 V at 10 mA cm^(-2))and hydrogen evolution reaction(HER)(7 mV at 10 mA cm^(-2)).Experimental results demonstrated that both Cu and Ni modulated the electronic environment around Pt and Au.The electron-rich active center facilitates the rapid adsorption and dissociation of reactants and intermediates for both EOR and HER.Impressively,in the ethanol-assisted overall water splitting(E-OWS),a current density of 10 mA cm^(-2)was achieved at 0.28 V.Moreover,an advanced acid-base self-powered system(A-Bsps)that can achieve a self-powered voltage of 0.59 V was assembled.Accordingly,the self-driven hydrogen production with zero external power supply was realized by integrating A-Bsps with the E-OWS equipment.The interesting results can provide a feasible strategy for designing and developing advanced nanoalloy-based materials for clean energy integration and use in various fields.展开更多
With the growing interest in utilizing Mg and austenitic stainless steel(ASS)in the automotive sector,joining them together in three-sheet configuration is inevitable.However,achieving this task presents considerable ...With the growing interest in utilizing Mg and austenitic stainless steel(ASS)in the automotive sector,joining them together in three-sheet configuration is inevitable.However,achieving this task presents considerable challenges due to the large differences in their physical,metallurgical and mechanical properties.To overcome these challenges,the feasibility of using weld-bonding to join Mg alloy/ASS/ASS was investigated.The nugget formation,interface characteristics,microstructure and mechanical properties of the joints were investigated.The results show that the connection between the Mg alloy and upper ASS was achieved through the combined effect of the cured adhesive and weld-brazing in the weld zone.On the other hand,a metallurgical bond was formed at the ASS/ASS interface.The Mg nugget microstructure exhibited fine columar grains composed predominantly of primaryα-Mg grains along with a eutectic mixture ofα-Mg andβ-Mg17Al12.The nugget formed at the ASS/ASS interface consisted largely of columnar grains of austenite,with some equiaxed dendritic grains formed at the centerline of the joint.The weld-bonded joints exhibited an average peak load and energy absorption of about 8.5 kN and 17 J,respectively(the conventional RSW joints failed with minimal or no load application).The failure mode of the joints changed with increasing welding current from interfacial failure via the Mg nugget/upper ASS interface to partial interfacial failure(part of the Mg nugget was pulled out of the Mg sheet).Both failure modes were accompanied by cohesive failure in the adhesive zone.展开更多
The damage characteristics of different speed sections of Cu−Cr−Zr alloy rail after simulated launch were studied.The microstructure,morphologies and properties of samples were investigated by using XRD,XPS,EBSD,SEM,h...The damage characteristics of different speed sections of Cu−Cr−Zr alloy rail after simulated launch were studied.The microstructure,morphologies and properties of samples were investigated by using XRD,XPS,EBSD,SEM,hardness test,electrochemical test and DSC techniques.It was found that deposition layers were formed on the surfaces of the simulated launch samples.The thickness and surface roughness of these deposition layers increased with increasing the heat effect,suggesting a launch speed dependent damage degree of the arc ablation.The hardness variation of samples is attributed to the effects of the deposition layer and deformation hardening.The surface deposition layer affects corrosion resistance and crystalline characteristics,leading to changes in subsequent service performances.Additionally,the surface texture and plastic deformation ability of the samples are related to the recrystallization degree and deformation grain amount.展开更多
The use of magnesium alloy high pressure die cast(HPDC)components for structural applications,especially in the automotive and transportation industries,where weight reduction is of a great concern,is increasing.As ne...The use of magnesium alloy high pressure die cast(HPDC)components for structural applications,especially in the automotive and transportation industries,where weight reduction is of a great concern,is increasing.As new applications are developing and existing applications are becoming more complex,there is a need for improved properties from magnesium HPDC alloys.This paper reviews the recent developments in HPDC magnesium alloys for transportation applications.Compared to the conventional HPDC magnesium alloys,i.e.AZ91D,AM50A/AM60B and AE44,these new alloys have one or more of the following properties:higher strength,higher ductility,superior high-temperature properties or higher thermal conductivities.In this work,characteristics which are important in product manufacturing or product performance will be evaluated and discussed,including die castability of powertrain component or thin-walled structural component,mechanical properties at elevated temperatures and ductility.Results indicate that these alloys have great potentials to be added to the current magnesium HPDC alloy family and being used in actual automotive and other transport applications.展开更多
China is currently vigorously implementing the“energy conservation and emission reduction”and“dual carbon”strategies.As the most resource-advantaged light metal material in China,Magnesium(Mg)alloy is progressivel...China is currently vigorously implementing the“energy conservation and emission reduction”and“dual carbon”strategies.As the most resource-advantaged light metal material in China,Magnesium(Mg)alloy is progressively expanding its application in automobile,rail transportation,aerospace,medical,and electronic products.Chongqing University,Shanghai Jiaotong University,and Australian National University have conducted extensive research on the preparation,properties,and processes of Mg alloys.In the past 20 years,the proportion of Mg alloy in the automotive industry has gradually expanded,whereas currently the design and development of Mg alloy parts for automobiles has rarely been reported.Thus,the application models and typical parts cases of Mg alloy are summarized mainly from the four systems of the whole vehicle(body system,chassis system,powertrain system,interior,and exterior system).Subsequently,two actual original equipment manufacturers(OEM)cases are used to introduce the development logic of reliable die-cast Mg alloy,including forward design,formability analysis,process design analysis,structural redesign,manufacturing,and testing,aiming to share the methods,processes,and focus of attention of automotive OEMs for developing Mg alloy parts to enhance the confidence and motivation of applying Mg alloy in automotive field.Eventually,the multiple challenges faced by Mg alloy materials are sorted out and how to face these challenges are discussed.National policies and regulations,environmental protection and energy saving,and consumer demand will continue to promote the application of Mg.展开更多
Since the introduction of Tesla's Giga-Casting process, the automotive industry has widely accepted the concept of super-sized structural components due to their significant potential for enhancing the light-weigh...Since the introduction of Tesla's Giga-Casting process, the automotive industry has widely accepted the concept of super-sized structural components due to their significant potential for enhancing the light-weighting of both electric and internal combustion engine vehicles.These super-sized components can be further lightened by using Mg alloys because of their exceptional lightweight characteristics, with a density only two-thirds that of aluminium alloys and one-fourth that of steel. This outstanding attribute offers the attractive prospect of achieving significant weight reduction without compromising structural integrity. This review examines studies on the Mg-alloy HighPressure Die Casting(HPDC) process, providing insights into the future prospects of incorporating Mg alloys into super-sized automotive HPDC components.展开更多
气氛环境下原位研究催化剂的烧结行为,能够为理解催化剂在预处理以及反应条件下的烧结机理和高稳定催化剂的设计提供重要的实验依据。本文以Au/CeO_(2)模型纳米催化剂为研究对象,利用环境透射电子显微镜原位观察其在O_(2)与CO气氛下的...气氛环境下原位研究催化剂的烧结行为,能够为理解催化剂在预处理以及反应条件下的烧结机理和高稳定催化剂的设计提供重要的实验依据。本文以Au/CeO_(2)模型纳米催化剂为研究对象,利用环境透射电子显微镜原位观察其在O_(2)与CO气氛下的高温动态烧结过程。实验发现,负载在CeO_(2)上的Au纳米颗粒在O_(2)与CO气氛环境中表现出不同的烧结行为,其在O_(2)气氛下具有较高的烧结速度,同时存在颗粒迁移与聚集长大(particle migration and coalescence,PMC)和奥斯特瓦尔德熟化(Ostwald ripening,OR)两种烧结过程;在CO气氛下烧结速度较慢,烧结过程以OR为主。对比不同气氛环境下烧结后催化剂的表面结构可知,CO增加了CeO_(2)表面台阶的数量以及表面氧空位浓度,增强了载体对Au颗粒的锚定作用,从而提升Au/CeO_(2)催化剂的稳定性。展开更多
High-entropy alloys(HEAs),which were introduced as a pioneering concept in 2004,have captured the keen interest of nu-merous researchers.Entropy,in this context,can be perceived as representing disorder and randomness...High-entropy alloys(HEAs),which were introduced as a pioneering concept in 2004,have captured the keen interest of nu-merous researchers.Entropy,in this context,can be perceived as representing disorder and randomness.By contrast,elemental composi-tions within alloy systems occupy specific structural sites in space,a concept referred to as structure.In accordance with Shannon entropy,structure is analogous to information.Generally,the arrangement of atoms within a material,termed its structure,plays a pivotal role in dictating its properties.In addition to expanding the array of options for alloy composites,HEAs afford ample opportunities for diverse structural designs.The profound influence of distinct structural features on the exceptional behaviors of alloys is underscored by numer-ous examples.These features include remarkably high fracture strength with excellent ductility,antiballistic capability,exceptional radi-ation resistance,and corrosion resistance.In this paper,we delve into various unique material structures and properties while elucidating the intricate relationship between structure and performance.展开更多
基金Funded by the Project of Sanya Yazhou Bay Science and Technology City(No.SCKJ-JYRC-2022-44)the Fundamental Research Funds for the Central Universities(WUT:2023Ⅲ007XXH)。
文摘Au-Ag alloy nanostars based flexible paper surface enhanced Raman spectroscopy sensors were fabricated through simple nanostar coating on regular office paper,and the surface enhanced Raman spectroscopy detection performances were investigated using crystal violet dye analyte.Au-Ag nanostars with sharp tips were synthesized via metal ions reduction method.Transmission electron microscope images,X-Ray diffraction pattern and energy dispersive spectroscopy elemental mapping confirmed the nanostar geometry and Au/Ag components of the nanostructure.UV-Vis-NIR absorption spectrum shows wide local surface plasmon resonance induced optical extinction.In addition,finite-difference time-domain simulation shows much stronger electromagnetic field from nanostars than from sphere nanoparticle.The effect of coating layer on Raman signal intensities was discussed,and optimized 5-layer coating with best Raman signal was obtained.The Au-Ag nanostatrs homogeneously distribute on paper fiber surface.The detection limit is 10-10 M,and the relationship between analyte concentrations and Raman signal intensities shows well linear,for potential quantitative analysis.The calculated enhancement factor is 4.795×10^(6).The flexible paper surface enhanced Raman spectroscopy sensors could be applied for trace chemical and biology molecule detection.
基金Funded by the Central Government Guides Local Funds for Science and Technology Development(No.YDZJSX20231A045)the Fundamental Research Program of Shanxi Province(Nos.202103021223288 and 202103021224282)。
文摘The evolution of microstructure during hot deformation is key to achieving good mechanical properties in aluminum alloys.We have developed a cellular automaton(CA) based model to simulate the microstructural evolution in 7075 aluminum alloy during hot deformation.Isothermal compression tests were conducted to obtain material parameters for 7075 aluminum alloy,leading to the establishment of models for dislocation density,nucleation of recrystallized grains,and grain growth.Integrating these aspects with grain topological deformation,our CA model effectively predicts flow stress,dynamic recrystallization(DRX) volume fraction,and average grain size under diverse deformation conditions.A systematic comparison was made between electron back scattered diffraction(EBSD) maps and CA model simulated under different deformation temperatures(573 to 723 K),strain rates(0.001 to 1 s^(-1)),and strain amounts(30% to 70%).These analyses indicate that large strain,high temperature,and low strain rate facilitate dynamic recrystallization and grain refinement.The results from the CA model show good accuracy and predictive capability,with experimental error within 10%.
基金supported by the Key projects of intergovernmental international cooperation in the Key R&D programs of the Ministry of Science and Technology of China(No.2021YFE0115800)the National Science Funding Committee of China(No.U20A20250)。
文摘Compared to conventional electrocatalytic water splitting,electrocatalytic ethanol oxidation reaction(EOR)along with hydrogen production is considered a more energy-efficient strategy.Herein,we prepared a type of novel quaternary alloy catalyst(PtAuCuNi@NF)that exhibits excellent activity for EOR(0.215 V at 10 mA cm^(-2))and hydrogen evolution reaction(HER)(7 mV at 10 mA cm^(-2)).Experimental results demonstrated that both Cu and Ni modulated the electronic environment around Pt and Au.The electron-rich active center facilitates the rapid adsorption and dissociation of reactants and intermediates for both EOR and HER.Impressively,in the ethanol-assisted overall water splitting(E-OWS),a current density of 10 mA cm^(-2)was achieved at 0.28 V.Moreover,an advanced acid-base self-powered system(A-Bsps)that can achieve a self-powered voltage of 0.59 V was assembled.Accordingly,the self-driven hydrogen production with zero external power supply was realized by integrating A-Bsps with the E-OWS equipment.The interesting results can provide a feasible strategy for designing and developing advanced nanoalloy-based materials for clean energy integration and use in various fields.
基金Supported by National Natural Science Foundation of China (Grant No.52075378)Prince Sattam Bin Abdulaziz University of Saudi Arabia (Grant No.PSAU/2024/R/1445)。
文摘With the growing interest in utilizing Mg and austenitic stainless steel(ASS)in the automotive sector,joining them together in three-sheet configuration is inevitable.However,achieving this task presents considerable challenges due to the large differences in their physical,metallurgical and mechanical properties.To overcome these challenges,the feasibility of using weld-bonding to join Mg alloy/ASS/ASS was investigated.The nugget formation,interface characteristics,microstructure and mechanical properties of the joints were investigated.The results show that the connection between the Mg alloy and upper ASS was achieved through the combined effect of the cured adhesive and weld-brazing in the weld zone.On the other hand,a metallurgical bond was formed at the ASS/ASS interface.The Mg nugget microstructure exhibited fine columar grains composed predominantly of primaryα-Mg grains along with a eutectic mixture ofα-Mg andβ-Mg17Al12.The nugget formed at the ASS/ASS interface consisted largely of columnar grains of austenite,with some equiaxed dendritic grains formed at the centerline of the joint.The weld-bonded joints exhibited an average peak load and energy absorption of about 8.5 kN and 17 J,respectively(the conventional RSW joints failed with minimal or no load application).The failure mode of the joints changed with increasing welding current from interfacial failure via the Mg nugget/upper ASS interface to partial interfacial failure(part of the Mg nugget was pulled out of the Mg sheet).Both failure modes were accompanied by cohesive failure in the adhesive zone.
基金the Key Research and Development Program of China(No.2022YFB2404102)the National Natural Science Foundation of China(Nos.51971093,52171158,52101196)+5 种基金the Key Research and Development Program of Shandong Province,China(Nos.2020ZLYS11,2021ZLGX01,2022CXGC020308,2023CXGC010308)the Major Innovation Projects of Shandong Province,China(Nos.2020CXGC010701,2020CXGC010702)the Young Taishan Scholars,China(No.tsqn202211184)the Shandong Provincial Natural Science Foundation,China(No.ZR2022ME137)the Yantai Science and Technology Planning Project,China(No.2021ZDCX001)the Open Project Program of Shandong Marine Aerospace Equipment Technological Innovation Center(Ludong University),China(No.MAETIC2021-11).
文摘The damage characteristics of different speed sections of Cu−Cr−Zr alloy rail after simulated launch were studied.The microstructure,morphologies and properties of samples were investigated by using XRD,XPS,EBSD,SEM,hardness test,electrochemical test and DSC techniques.It was found that deposition layers were formed on the surfaces of the simulated launch samples.The thickness and surface roughness of these deposition layers increased with increasing the heat effect,suggesting a launch speed dependent damage degree of the arc ablation.The hardness variation of samples is attributed to the effects of the deposition layer and deformation hardening.The surface deposition layer affects corrosion resistance and crystalline characteristics,leading to changes in subsequent service performances.Additionally,the surface texture and plastic deformation ability of the samples are related to the recrystallization degree and deformation grain amount.
文摘The use of magnesium alloy high pressure die cast(HPDC)components for structural applications,especially in the automotive and transportation industries,where weight reduction is of a great concern,is increasing.As new applications are developing and existing applications are becoming more complex,there is a need for improved properties from magnesium HPDC alloys.This paper reviews the recent developments in HPDC magnesium alloys for transportation applications.Compared to the conventional HPDC magnesium alloys,i.e.AZ91D,AM50A/AM60B and AE44,these new alloys have one or more of the following properties:higher strength,higher ductility,superior high-temperature properties or higher thermal conductivities.In this work,characteristics which are important in product manufacturing or product performance will be evaluated and discussed,including die castability of powertrain component or thin-walled structural component,mechanical properties at elevated temperatures and ductility.Results indicate that these alloys have great potentials to be added to the current magnesium HPDC alloy family and being used in actual automotive and other transport applications.
基金supported partly by the Fundamental Research Funds for Central Universities(No.06500203 and No.00007735).
文摘China is currently vigorously implementing the“energy conservation and emission reduction”and“dual carbon”strategies.As the most resource-advantaged light metal material in China,Magnesium(Mg)alloy is progressively expanding its application in automobile,rail transportation,aerospace,medical,and electronic products.Chongqing University,Shanghai Jiaotong University,and Australian National University have conducted extensive research on the preparation,properties,and processes of Mg alloys.In the past 20 years,the proportion of Mg alloy in the automotive industry has gradually expanded,whereas currently the design and development of Mg alloy parts for automobiles has rarely been reported.Thus,the application models and typical parts cases of Mg alloy are summarized mainly from the four systems of the whole vehicle(body system,chassis system,powertrain system,interior,and exterior system).Subsequently,two actual original equipment manufacturers(OEM)cases are used to introduce the development logic of reliable die-cast Mg alloy,including forward design,formability analysis,process design analysis,structural redesign,manufacturing,and testing,aiming to share the methods,processes,and focus of attention of automotive OEMs for developing Mg alloy parts to enhance the confidence and motivation of applying Mg alloy in automotive field.Eventually,the multiple challenges faced by Mg alloy materials are sorted out and how to face these challenges are discussed.National policies and regulations,environmental protection and energy saving,and consumer demand will continue to promote the application of Mg.
基金the funding from the National Key R&D Program of China (No.2022YFB3709300 and No.2021YFB3701000)National Natural Science Foundation of China (No.U21A2048,No.52271090,and No.52101125)。
文摘Since the introduction of Tesla's Giga-Casting process, the automotive industry has widely accepted the concept of super-sized structural components due to their significant potential for enhancing the light-weighting of both electric and internal combustion engine vehicles.These super-sized components can be further lightened by using Mg alloys because of their exceptional lightweight characteristics, with a density only two-thirds that of aluminium alloys and one-fourth that of steel. This outstanding attribute offers the attractive prospect of achieving significant weight reduction without compromising structural integrity. This review examines studies on the Mg-alloy HighPressure Die Casting(HPDC) process, providing insights into the future prospects of incorporating Mg alloys into super-sized automotive HPDC components.
文摘气氛环境下原位研究催化剂的烧结行为,能够为理解催化剂在预处理以及反应条件下的烧结机理和高稳定催化剂的设计提供重要的实验依据。本文以Au/CeO_(2)模型纳米催化剂为研究对象,利用环境透射电子显微镜原位观察其在O_(2)与CO气氛下的高温动态烧结过程。实验发现,负载在CeO_(2)上的Au纳米颗粒在O_(2)与CO气氛环境中表现出不同的烧结行为,其在O_(2)气氛下具有较高的烧结速度,同时存在颗粒迁移与聚集长大(particle migration and coalescence,PMC)和奥斯特瓦尔德熟化(Ostwald ripening,OR)两种烧结过程;在CO气氛下烧结速度较慢,烧结过程以OR为主。对比不同气氛环境下烧结后催化剂的表面结构可知,CO增加了CeO_(2)表面台阶的数量以及表面氧空位浓度,增强了载体对Au颗粒的锚定作用,从而提升Au/CeO_(2)催化剂的稳定性。
基金supported by the National Natural Science Foundation of China(No.52273280)the Creative Research Groups of China(No.51921001).
文摘High-entropy alloys(HEAs),which were introduced as a pioneering concept in 2004,have captured the keen interest of nu-merous researchers.Entropy,in this context,can be perceived as representing disorder and randomness.By contrast,elemental composi-tions within alloy systems occupy specific structural sites in space,a concept referred to as structure.In accordance with Shannon entropy,structure is analogous to information.Generally,the arrangement of atoms within a material,termed its structure,plays a pivotal role in dictating its properties.In addition to expanding the array of options for alloy composites,HEAs afford ample opportunities for diverse structural designs.The profound influence of distinct structural features on the exceptional behaviors of alloys is underscored by numer-ous examples.These features include remarkably high fracture strength with excellent ductility,antiballistic capability,exceptional radi-ation resistance,and corrosion resistance.In this paper,we delve into various unique material structures and properties while elucidating the intricate relationship between structure and performance.